References
- Alshorbagy, A.E., Eltaher, M. and Mahmoud, F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Appl. Math. Model., 35(1), 412-425. https://doi.org/10.1016/j.apm.2010.07.006
- Asghari, M. (2010), "On the size-dependent behavior of functionally graded micro-beams", Mater. Design, 31(5), 2324-2329. https://doi.org/10.1016/j.matdes.2009.12.006
- Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, F.F. (2013), "Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams", Compos. Struct., 99, 193-201. https://doi.org/10.1016/j.compstruct.2012.11.039
- Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2012), "Free vibration analysis of functionally graded size-dependent nanobeams", Appl. Math. Comput., 218(14), 7406-7420. https://doi.org/10.1016/j.amc.2011.12.090
- Kaci, A., Bakhti, K. and Tounsi, A. (2012), "Nonlinear cylindrical bending of functionally graded carbon nanotube-reinforced composite plates", Steel Compos. Struct., Int. J., 12(6), 491-504. https://doi.org/10.12989/scs.2012.12.6.491
- Kadoli, R., Akhtar, K. and Ganesan, N. (2008), "Static analysis of functionally graded beams using higher order shear deformation theory", Appl. Math. Model., 32(12), 2509-2525. https://doi.org/10.1016/j.apm.2007.09.015
- Karama, M., Afaq, K.S. and Mistou, S. (2003), "Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity", Int. J. Solids Struct., 40(6), 1525-1546. https://doi.org/10.1016/S0020-7683(02)00647-9
- Larbi, L.O., Kaci, A., Houari, M.S.A. and Tounsi, A. (2013), "An efficient shear deformation beam theory based on neutral surface position for bending and free vibration of functionally graded beams", Mech. Struct. Mach. [In press]
- Li, X.F. (2008), "A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams", J. Sound Vib., 318(4-5), 1210-1229. https://doi.org/10.1016/j.jsv.2008.04.056
- Li, X.F., Wang, B.L. and Han, J.C. (2010), "A higher-order theory for static and dynamic analyses of functionally graded beams", Arch. Appl. Mech., 80(10), 1197-1212. https://doi.org/10.1007/s00419-010-0435-6
- Menaa, R., Tounsi, A., Mouaici, F., Mechab, I., Zidi, M. and Adda Bedia, E.A. (2012), "Analytical solutions for static shear correction factor of functionally graded rectangular beams", Mech. Adv. Mater. Struct., 19(8), 641-652. https://doi.org/10.1080/15376494.2011.581409
- Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719
- Reddy, J.N. (2002), Energy Principles and Variational Methods in Applied Mechanics, (2nd Edition), John Wiley & Sons Inc.
- Sallai, B.O., Tounsi, A., Mechab, I., Bachir Bouiadjra, M., Meradjah, M. and Adda Bedia, E.A. (2009), "A theoretical analysis of flexional bending of Al/Al2O3 S-FGM thick beams", Comput. Mater. Sci., 44(4), 1344-1350. https://doi.org/10.1016/j.commatsci.2008.09.001
- Sanjay Anandrao, K., Gupta, R.K., Ramchandran, P., Venkateswara Rao, G. (2012), "Non-linear free vibrations and post-buckling analysis of shear flexible functionally graded beams", Struct. Eng. Mech., Int. J., 44(3), 339-361. https://doi.org/10.12989/sem.2012.44.3.339
- Simsek, M. (2009), "Static analysis of a functionally graded beam under a uniformly distributed load by Ritz method", Int. J. Eng. Appl. Sci., 1(3), 1-11.
- Simsek, M. (2010), "Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories", Nucl. Eng. Des., 240(4), 697-705. https://doi.org/10.1016/j.nucengdes.2009.12.013
- Simsek, M. and Kocaturk, T. (2009), "Free and forced vibration of a functionally graded beam subjected to a concentrated moving harmonic load", Compos. Struct., 90(4), 465-473. https://doi.org/10.1016/j.compstruct.2009.04.024
- Simsek, M. and Yurtçu, H.H. (2012), "Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal timoshenko beam theory," Compos. Struct., 97, 378-386.
- Sina, S.A., Navazi, H.M. and Haddadpour, H. (2009), "An analytical method for free vibration analysis of functionally graded beams", Mater. Des., 30(3), 741-747. https://doi.org/10.1016/j.matdes.2008.05.015
- Soldatos, K. (1992), "A transverse shear deformation theory for homogeneous monoclinic plates", Acta Mech., 94(3-4), 195-220. https://doi.org/10.1007/BF01176650
- Suresh, S. and Mortensen, A. (1998), "Fundamentals of Functionally Graded Materials", IOM Communications Ltd., London.
- Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y
- Yahoobi, H. and Feraidoon, A. (2010), "Influence of neutral surface position on deflection of functionally graded beam under uniformly distributed load", World Appl. Sci. J., 10(3), 337-341. https://doi.org/10.3923/jas.2010.337.342
- Yang, J. and Chen, Y. (2008), "Free vibration and buckling analyses of functionally graded beams with edge cracks", Compos. Struct., 83(1), 48-60. https://doi.org/10.1016/j.compstruct.2007.03.006
- Yesilce, Y. (2010), "Effect of axial force on the free vibration of Reddy-Bickford multi-span beam carrying multiple spring-mass systems", J. Vib. Control, 16(1), 11-32. https://doi.org/10.1177/1077546309102673
- Yesilce, Y. and Catal, S. (2009), "Free vibration of axially loaded Reddy-Bickford beam on elastic soil using the differential transform method", Struct. Eng. Mech., Int. J., 31(4), 453-476. https://doi.org/10.12989/sem.2009.31.4.453
- Yesilce, Y. and Catal, S. (2011), "Solution of free vibration equations of semi-rigid connected Reddy-Bickford beams resting on elastic soil using the differential transform method", Arch. Appl. Mech., 81(2), 199-213. https://doi.org/10.1007/s00419-010-0405-z
- Zhang, D.G. and Zhou, Y.H. (2008), "A theoretical analysis of FGM thin plates based on physical neutral surface", Comput. Mater. Sci., 44(2), 716-720. https://doi.org/10.1016/j.commatsci.2008.05.016
Cited by
- Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations vol.13, pp.1, 2017, https://doi.org/10.1007/s10999-015-9318-x
- Nonlinear magneto-electro-mechanical vibration analysis of double-bonded sandwich Timoshenko microbeams based on MSGT using GDQM vol.21, pp.1, 2016, https://doi.org/10.12989/scs.2016.21.1.001
- Analyse of the behavior of functionally graded beams based on neutral surface position vol.55, pp.4, 2015, https://doi.org/10.12989/sem.2015.55.4.703
- A new five-unknown refined theory based on neutral surface position for bending analysis of exponential graded plates vol.49, pp.4, 2014, https://doi.org/10.1007/s11012-013-9827-3
- Nonlinear dynamic response and vibration of shear deformable imperfect eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic foundations vol.40, 2015, https://doi.org/10.1016/j.ast.2014.11.005
- A new hyperbolic shear deformation plate theory for static analysis of FGM plate based on neutral surface position vol.8, pp.3, 2015, https://doi.org/10.12989/gae.2015.8.3.305
- Static bending and free vibration of FGM beam using an exponential shear deformation theory vol.4, pp.1, 2015, https://doi.org/10.12989/csm.2015.4.1.099
- On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model vol.18, pp.4, 2015, https://doi.org/10.12989/scs.2015.18.4.1063
- Buckling analysis of functionally graded material grid systems vol.54, pp.5, 2015, https://doi.org/10.12989/sem.2015.54.5.877
- Thermal stability of functionally graded sandwich plates using a simple shear deformation theory vol.58, pp.3, 2016, https://doi.org/10.12989/sem.2016.58.3.397
- Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect vol.18, pp.2, 2015, https://doi.org/10.12989/scs.2015.18.2.425
- A simple shear deformation theory based on neutral surface position for functionally graded plates resting on Pasternak elastic foundations vol.53, pp.6, 2015, https://doi.org/10.12989/sem.2015.53.6.1215
- Ultimate shear strength of composite welded steel-aluminium beam subjected to shear load vol.16, pp.1, 2016, https://doi.org/10.1007/s13296-016-3004-1
- A n-order refined theory for bending and free vibration of functionally graded beams vol.54, pp.5, 2015, https://doi.org/10.12989/sem.2015.54.5.923
- Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories vol.53, pp.6, 2015, https://doi.org/10.12989/sem.2015.53.6.1143
- Elasticity solution for a cantilever beam with exponentially varying properties vol.58, pp.2, 2017, https://doi.org/10.1134/S0021894417020213
- Free vibration analysis of a rotating non-uniform functionally graded beam vol.19, pp.5, 2015, https://doi.org/10.12989/scs.2015.19.5.1279
- Analytical study on post-buckling and nonlinear free vibration analysis of FG beams resting on nonlinear elastic foundation under thermo-mechanical loadings using VIM vol.17, pp.5, 2014, https://doi.org/10.12989/scs.2014.17.5.753
- Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position vol.125, 2015, https://doi.org/10.1016/j.compstruct.2014.12.070
- Analytical solution for nonlocal buckling characteristics of higher-order inhomogeneous nanosize beams embedded in elastic medium vol.4, pp.3, 2016, https://doi.org/10.12989/anr.2016.4.3.229
- A n-order four variable refined theory for bending and free vibration of functionally graded plates vol.17, pp.1, 2014, https://doi.org/10.12989/scs.2014.17.1.021
- On the Thermal Buckling Characteristics of Armchair Single-Walled Carbon Nanotube Embedded in an Elastic Medium Based on Nonlocal Continuum Elasticity vol.45, pp.2, 2015, https://doi.org/10.1007/s13538-015-0306-2
- A new simple shear and normal deformations theory for functionally graded beams vol.18, pp.2, 2015, https://doi.org/10.12989/scs.2015.18.2.409
- A new higher order shear and normal deformation theory for functionally graded beams vol.18, pp.3, 2015, https://doi.org/10.12989/scs.2015.18.3.793
- Bending analysis of FGM plates using a sinusoidal shear deformation theory vol.23, pp.6, 2016, https://doi.org/10.12989/was.2016.23.6.543
- Modeling and analysis of functionally graded sandwich beams: A review pp.1537-6532, 2018, https://doi.org/10.1080/15376494.2018.1447178
- A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams vol.19, pp.2, 2017, https://doi.org/10.12989/sss.2017.19.2.115
- Static deflection and dynamic behavior of higher-order hyperbolic shear deformable compositionally graded beams vol.6, pp.1, 2013, https://doi.org/10.12989/amr.2017.6.1.013
- Buckling temperature of a single-walled boron nitride nanotubes using a novel nonlocal beam model vol.5, pp.1, 2017, https://doi.org/10.12989/anr.2017.5.1.001
- A refined hyperbolic shear deformation theory for bending of functionally graded beams based on neutral surface position vol.63, pp.5, 2013, https://doi.org/10.12989/sem.2017.63.5.683
- Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory vol.20, pp.3, 2013, https://doi.org/10.12989/sss.2017.20.3.369
- Thermal stability analysis of temperature dependent inhomogeneous size-dependent nano-scale beams vol.7, pp.1, 2013, https://doi.org/10.12989/amr.2018.7.1.001
- A refined quasi-3D hybrid-type higher order shear deformation theory for bending and Free vibration analysis of advanced composites beams vol.27, pp.4, 2013, https://doi.org/10.12989/was.2018.27.4.269
- Vibration response and wave propagation in FG plates resting on elastic foundations using HSDT vol.69, pp.5, 2013, https://doi.org/10.12989/sem.2019.69.5.511
- Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT vol.7, pp.2, 2013, https://doi.org/10.12989/anr.2019.7.2.089
- A novel first order refined shear-deformation beam theory for vibration and buckling analysis of continuously graded beams vol.6, pp.3, 2013, https://doi.org/10.12989/aas.2019.6.3.189
- Free and forced analysis of perforated beams vol.31, pp.5, 2013, https://doi.org/10.12989/scs.2019.31.5.489
- Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes vol.36, pp.6, 2013, https://doi.org/10.12989/scs.2020.36.6.643
- Exact third-order static and free vibration analyses of functionally graded porous curved beam vol.39, pp.1, 2021, https://doi.org/10.12989/scs.2021.39.1.001
- A Refined Theory for Bending Vibratory Analysis of Thick Functionally Graded Beams vol.9, pp.12, 2013, https://doi.org/10.3390/math9121422