DOI QR코드

DOI QR Code

Recovery of Copper from Spent Photovoltaic Ribbon in Solar Module

폐태양전지(廢太陽電池)용 솔라리본으로부터 구리회수(回收)에 관한 연구(硏究)

  • Lee, Jin-Seok (Eenergy Materials and Convergence Research Department, Korea Institute of Energy Research) ;
  • Jang, Bo-Yun (Eenergy Materials and Convergence Research Department, Korea Institute of Energy Research) ;
  • Kim, Joon-Soo (Eenergy Materials and Convergence Research Department, Korea Institute of Energy Research) ;
  • Ahn, Young-Soo (Eenergy Materials and Convergence Research Department, Korea Institute of Energy Research) ;
  • Kang, Gi-Hwan (Eenergy Materials and Convergence Research Department, Korea Institute of Energy Research) ;
  • Wang, Jei-Pil (Department of Metallurgical Engineering, Pukyong National University)
  • 이진석 (한국Energy기술연구원, Energy융합소재연구단, 태양Energy연구단) ;
  • 장보윤 (한국Energy기술연구원, Energy융합소재연구단, 태양Energy연구단) ;
  • 김준수 (한국Energy기술연구원, Energy융합소재연구단, 태양Energy연구단) ;
  • 안영수 (한국Energy기술연구원, Energy융합소재연구단, 태양Energy연구단) ;
  • 강기환 (한국Energy기술연구원, Energy융합소재연구단, 태양Energy연구단) ;
  • 왕제필 (국립부경대학교 금속공학과)
  • Received : 2013.09.16
  • Accepted : 2013.10.10
  • Published : 2013.10.30

Abstract

The recovery of copper from spent photovoltaic ribbon was conducted using thermal treatment method at the range of temperature of $300^{\circ}C$ to $600^{\circ}C$ under inert atmosphere. The coating layer consisted of lead of 68.99 wt.% and tin of 31.21 wt.% was melted down at elevated temperatures and was collected on the bottom of crucible. The chemical composition of copper ribbon after thermal treatment was analyzed by ICP-MS (Inductively coupled plasma mass spectrometry) and the purity of copper was found to be obtained up to about 96 wt.% regardless of temperatures. The cross-sectional area of the specimen was also examined by SEM (scanning electron microscopy) and EDX (energy dispersive X-ray microscopy).

폐 태양광 전지내의 구리리본전극으로부터 구리를 회수하기 위해 불활성 가스분위기하에서 $300-600^{\circ}C$로 열처리 하였다. 구리리본전극의 코팅층은 68.99 wt.%의 납과 31.21 wt.%의 주석으로 구성되어 있는데, 각각의 온도에서 코팅층을 용해한 후 반응도가니에 용해된 코팅층 회수하였다. 열처리 후 회수되어진 코팅층은 ICP-MS (Inductively coupled plasma mass spectrometry)로 성분 분석을 실시하였으며, 온도범위에 관계없이 95 wt.% 이상의 구리순도를 얻을 수 있었다. 구리리본전극 샘플의 횡단면은 SEM (scanning electron microscopy) and EDX (energy dispersive X-ray microscopy)로 관찰하였다.

Keywords

References

  1. Max, M., Wolfgang, B., Martin, S., Andreas, M., Armin, R., 2013 : Recycling paths of thin-film chalcogenide photovoltaic waster-Current feasible processes, Renewable Energy, 55, pp. 220-229. https://doi.org/10.1016/j.renene.2012.12.038
  2. Kang, S.M., Yoo, S.Y., Lee, J.N., Boo, B.H., Ryu, H.J., 2013 : Experimental investigations for recycling of silicon and glass from waster photovoltaic modules, Renewable Energy, 47, pp. 152-159.
  3. Wang, T.Y., Lin, Y.C., Sivakumar, R., Rai, D.K., Lan, C.W., 2008 : A novel approach for recycling of lerf loss silicon from cutting slurry waster for solar cell applications, Journal of Crystal Growth, 310, pp. 3403-4306. https://doi.org/10.1016/j.jcrysgro.2008.04.031
  4. Bruton, T.M., 1995 : Production of high efficiency nomocrystalline silicon solar cell, Renewable Energy, 6, pp. 299-302. https://doi.org/10.1016/0960-1481(95)00026-G
  5. Mcdonald, N.C., Pearce J.M., 2010 : Producer responsibility and recycling solar photovoltaic modules, Energy Policy, 28, pp. 7041-7047.
  6. Fthenakis, V.M., 2000 : End-of-life management and recycling of PV modules, Energy Policy, 20, pp. 1051-1058.
  7. Miles, R.W., Hynes, K.M., Forbes, I., 2005 : Photovoltaic solar cell: an overview of state-of-the-art cell development and environmental issues, Progress in Crystal Growth and Characterization of Materials, 51, pp. 1-42. https://doi.org/10.1016/j.pcrysgrow.2005.10.002
  8. Kang, S.K., Yoo, S.Y., Lee, J.N., Boo, B.H., Ryu, H.J., 2011 : Study for Recovery Silicon and Tempered Glass from Waste PV Modules, Journal of Korean Institute of Resources Recycling, 20(2), pp. 45-53. https://doi.org/10.7844/kirr.2011.20.2.045
  9. Jung, E.J., Kim, Y.H., Lee, Y.J., Kim, S.R., Kwon, W.K., 2010 : A Study on the Preparation of SiC Nano Powder from the Si Waste of Solar Cell Industry, Journal of Korean Institute of Resources Recycling, 19(5), pp. 44-49.
  10. Shin, J.S., Kim, D.S., Kim, K.Y., Shon, I.J., Moon, B.M., 2009 : Binderless Consolidation of Fine Poly-Si Powders for the Application as Photovoltaic Feedstock, Korean Institute of Resources Recycling, 18(1), pp. 38-43.
  11. Berger, W.G., Simon, F.G., Weimann, K., Alsema, E., 2010 : A Novel Approach for the Recycling of Thin Film Photovoltaic Modules, Resources, Conservation and Recycling, 54, pp. 711-718. https://doi.org/10.1016/j.resconrec.2009.12.001
  12. Marwede, M., Reller A., 2013 : Future Recycling Flows of Tellurium from Cadimium Telluride Photovoltaic Waste, Resources, Conservation and Recycling, 69, pp. 35-49.
  13. Fecht, H.J., Zhang M.X., Chang, Y.A., Perepezko, J.H., 1989 : Metastable Phase Equilibria in Lead-Tin Alloy Systems: Part II Thermodynamic Modeling, Metallurgical Transaction A, 20A, pp. 795-803. https://doi.org/10.1007/BF02651646

Cited by

  1. Recovery of Pb-Sn Alloy and Copper from Photovoltaic Ribbon in Spent Solar Module vol.415, 2017, https://doi.org/10.1016/j.apsusc.2017.02.072
  2. Development of New Device and Process to Recover Valuable Materials from Spent Solar Module vol.780, pp.1662-9795, 2018, https://doi.org/10.4028/www.scientific.net/KEM.780.48