DOI QR코드

DOI QR Code

The Effect of pH on Citric Acid Leaching of Soil Contaminated with Heavy Metals

중금속(重金屬) 오염토양(汚染土壤)의 구산(枸酸) 침출(浸出)에 대한 pH의 영향(影響)

  • Jung, Kyungbae (Department of Energy & Resources Engineering, Korea Maritime University) ;
  • Park, Hongki (Department of Energy & Resources Engineering, Korea Maritime University) ;
  • Yoo, Kyoungkeun (Department of Energy & Resources Engineering, Korea Maritime University) ;
  • Park, Jay Hyun (Institute of Mine Reclamation Technology, Mine Reclamation Corporation) ;
  • Choi, Ui Kyu (Institute of Mine Reclamation Technology, Mine Reclamation Corporation)
  • 정경배 (한국해양대학교 에너지자원공학과) ;
  • 박홍기 (한국해양대학교 에너지자원공학과) ;
  • 류경근 (한국해양대학교 에너지자원공학과) ;
  • 박제현 (한국광해관리공단 광해기술연구소) ;
  • 최의규 (한국광해관리공단 광해기술연구소)
  • Received : 2013.02.14
  • Accepted : 2013.03.20
  • Published : 2013.10.30

Abstract

The effect of pH on the citrate leaching behavior of heavy metal ion was investigated to develop an eco-friendly process for removing heavy metals from soil contaminated with copper, zinc, and lead. The leaching tests were performed using citrate solution with pH adjusted by mixing citric acid and sodium citrate under the following leaching conditions: particle size, under $75{\mu}m$; temperature, $50^{\circ}C$; citrate concentration, $1kmol/m^3$; pulp density, 5%; shaking speed, 100 rpm; leaching time, 1 hour. The difference of pH before and after the leaching test was not observed, and this result indicates the direct effect of hydrogen ion concentration on the leaching of metals was insignificant. The removal ratios of copper, zinc, and lead from the contaminated soil decreased with increasing pH. The thermodynamic calculation suggests that the leaching behaviors of metal ions were determined by two reactions; one is the reaction to form complex ions between heavy metal ions and citrate ion species, and the other is the reaction to form metal hydroxide between heavy metal ions and hydroxide ion.

구리, 아연 및 납 등의 중금속으로 오염된 사격장 토양으로부터 중금속 성분을 제거하기 위한 친환경적인 공정을 개발하기 위해 구연산용액을 이용하여 중금속 침출거동에 대한 pH의 영향을 조사하였다. 구연산 침출실험은 구연산과 구연산나트륨을 혼합하여 pH를 조절한 용액을 이용하여 시료입도 $75{\mu}m$이하, 반응온도 $50^{\circ}C$, 구연산 농도 1 몰, 광액농도 5%, 교반속도 100 rpm, 그리고 침출시간 1 시간의 조건에서 진행하였다. 침출반응 전후의 pH 변화는 미미하여 침출에 미치는 수소이온농도의 직접적인 영향은 크지 않은 것으로 판단되었다. 구리, 아연, 납의 제거율은 pH가 증가함에 따라 감소하였고, 열역학적인 계산결과, 이와 같은 침출거동은 중금속 이온이 구연산염 이온종과 착이온을 형성하는 반응과 중금속이온이 수산화이온과 결합하여 수산화물로 침전하는 반응에 의해 결정되는 것으로 분석되었다.

Keywords

References

  1. Labanowski, J., Monna, F., Bermond, A., Cambier, P., Fernandez, C., Lamy, I., Oort, F., 2008: Kinetic extractions to assess mobilization of Zn, Pb, Cu, and Cd in a metalcontaminated soil: EDTA vs. citrate, Environ. Pollut., 152(3), pp. 693-701. https://doi.org/10.1016/j.envpol.2007.06.054
  2. Mercier, G., Duchesne, J., Blackburn, D., 2002: Removal of Metals from Contaminated Soils by Mineral Processing Techniques Followed by Chemical Leaching, Water Air Soil Pollut., 135(1-4), pp. 105-130. https://doi.org/10.1023/A:1014738308043
  3. Meunier, N., Drogui, P., Mercier, G., Blais, J., 2009: Treatment of metal-loaded soil leachates by electrocoagulation, Separ. Purif. Tech., 67(1), pp. 110-116. https://doi.org/10.1016/j.seppur.2009.03.040
  4. Wen, J., Stacey, S. P., Mclaughlin, M. J., Kirby, J. K. 2009: Biodegradation of rhamnolipid, EDTA and citric acid in cadmium and zinc contaminated soils, Soil Biol. Biochem., 41(10), pp. 2214-2221. https://doi.org/10.1016/j.soilbio.2009.08.006
  5. Kirpichtchikova, T. A., Manceau, A., Spadini, L., Panfili, F., Marcus, M. A., Jacquet, T., 2006: Speciation and solubility of heavy metals in contaminated soil using X-ray microfluorescence, EXAFS spectroscopy, chemical extraction, and thermodynamic modeling, Geochim. Cosmochim. Acta., 70(9), pp. 2163-2190. https://doi.org/10.1016/j.gca.2006.02.006
  6. Furukawa, M. and Tokunaga, S., 2004: Extraction of Heavy Metals from a Contaminated Soil Using Citrate-Enhancing Extraction by pH Control and Ultrasound Application, J. Environ. Sci. Health, 39(3), pp. 627-638.
  7. Marino, M. A., Brica, R. M., Neale, C. N., 1997: Heavy metal soil remediation: The effects of attrition scrubbing on a wet gravity concentration process, Environ. Prog., 16(3), pp. 208-214. https://doi.org/10.1002/ep.3300160318
  8. Tokunaga, S., Park, S. W., Ulmanu, M., 2005: Extraction Behavior of Metallic Contaminants and Soil Constituents from Contaminated Soils, Environ. Tech., 26(6), pp. 673-682. https://doi.org/10.1080/09593330.2001.9619507
  9. Isoyama, M., Wada, S. I., 2007: Remediation of Pbcontaminated soils by washing with hydrochloric acid and subsequent immobilization with calcite and allophanic soil, J. Hazard. M., 143(3), pp. 636-642. https://doi.org/10.1016/j.jhazmat.2007.01.008
  10. Gao, Y., He, J., Ling, W., Hu, H., Liu, F., 2003: Effects of organic acids on copper and cadmium desorption from contaminated soils, Environ. Int., 29(6), pp. 613-618. https://doi.org/10.1016/S0160-4120(03)00048-5
  11. Jean-Soro, L., Bordas, F., Bollinger, J. C., 2012: Column leaching of chromium and nickel from a contaminated soil using EDTA and citric acid, Environ. Pollut., 164, pp. 175-181. https://doi.org/10.1016/j.envpol.2012.01.022
  12. Wasay, S. A., Barrington, S. F., Tokunaga, S., 1998: Remediation of Soils Polluted by Heavy Metals using Salts of Organic Acids and Chelating Agents, Environ. Tech., 19(4), pp. 369-380. https://doi.org/10.1080/09593331908616692
  13. Renella, G., Landi, L., Nannipieri, P., 2004: Degradation of low molecular weight organic acids complexed with heavy metals in soil, Geoderma, 122(2-4), pp. 311-315. https://doi.org/10.1016/j.geoderma.2004.01.018
  14. Bassi, R., Prasher, S. O., Simpson, B. K., 2000: Extraction of metals from a contaminated sandy soil using citric acid, Environ. Prog., 19(4), pp. 275-282. https://doi.org/10.1002/ep.670190415
  15. Martell, A., E. and Smith R. M., 1989: Critical Stability Constants, Vol. 3 Other Organic Ligands, pp. 161-164, Plenum Press, New York, USA.
  16. Bard, A. J., Parsons, R., and Jordan, J., 1985; Standard Potentials in Aqueous Solution, pp. 51, 222-223, 250-251, 288.

Cited by

  1. Behaviors of Cyanide Leaching of Gold in Tailings and Adsorption of Gold Ions on Activated Carbon vol.55, pp.5, 2018, https://doi.org/10.32390/ksmer.2018.55.5.414
  2. 토양 재활용을 위한 통계적 분석의 PAHs 농도 예측 vol.26, pp.4, 2013, https://doi.org/10.7844/kirr.2017.26.4.56
  3. 납 오염 논토양의 원위치 세척을 위한 FeCl3의 Bench-scale 적용성 평가: 소석회를 이용한 토양산도 개선 및 납의 벼 전이특성 vol.23, pp.1, 2013, https://doi.org/10.7857/jsge.2018.23.1.074