DOI QR코드

DOI QR Code

Fabrication of Mg(OH)2 from Ferro-Nickel Slag

페로니켈 슬래그를 이용(利用)한 수산화(水酸化)마그네슘 제조방법(製造方法)

  • Park, Soo Hyun (Energy & Environmental Division, Korea Institute of Ceramic Eng. & Tech.) ;
  • Chu, Yong Sik (Energy & Environmental Division, Korea Institute of Ceramic Eng. & Tech.) ;
  • Song, Hun (Energy & Environmental Division, Korea Institute of Ceramic Eng. & Tech.) ;
  • Lee, Jong Kyu (Energy & Environmental Division, Korea Institute of Ceramic Eng. & Tech.) ;
  • Seo, Sung Kwan (Energy & Environmental Division, Korea Institute of Ceramic Eng. & Tech.)
  • 박수현 (한국세라믹기술원 에너지환경소재본부) ;
  • 추용식 (한국세라믹기술원 에너지환경소재본부) ;
  • 송훈 (한국세라믹기술원 에너지환경소재본부) ;
  • 이종규 (한국세라믹기술원 에너지환경소재본부) ;
  • 서성관 (한국세라믹기술원 에너지환경소재본부)
  • Received : 2012.10.22
  • Accepted : 2012.12.17
  • Published : 2013.02.28

Abstract

Ferro-Nickel slag is a byproduct of Ferro-Nickel manufacturing process. Ferro-Nickel slag mostly discarded or used as aggregates despite having useful ingredients such as magnesium oxide and silicon oxide. This study tried to extract process for Mg ion using $H_2SO_4$ solution. And remove impurities and get high purity $Mg(OH)_2$ using NaOH. Mg ion was extracted with the Fe ion and other Ferro-Nickel slag composition by $H_2SO_4$ solution. It is important to control the pH because remove impurities and obtain high-purity $Mg(OH)_2$. The impurities were removed by precipitation of the hydroxides. After this process, we added NaOH and high-purity $Mg(OH)_2$ was obtained.

페로니켈 슬래그는 페로니켈 제조 공정의 부산물이다. 페로니켈 슬래그가 마그네슘 산화물 및 규소 산화물 등 유용 성분을 갖는데도 불구하고 대부분이 폐기되거나 골재로 사용된다. 이 연구는 $H_2SO_4$ 용액을 사용하여 Mg 이온을 추출하고, NaOH 용액을 사용하여 불순물 제거 및 고순도의 $Mg(OH)_2$를 얻으려고 하였다. $H_2SO_4$ 용액에 의해 Mg 이온은 Fe 이온 및 기타 페로니켈 슬래그 구성 성분과 함께 추출되었다. 불순물을 제거하고 고순도의 $Mg(OH)_2$를 얻기 위해서는 침출액의 pH 조절이 중요하다. 불순물은 가수분해에 의한 수산화물 침전으로 제거하였다. 이 과정 후, 여과액에 NaOH를 첨가하여 고순도의 $Mg(OH)_2$을 얻었다.

Keywords

References

  1. R.C.L. Jonckbloedt, 1998 : Olivine dissolution in sulphuric acid at elevated temperatures implications for the olivine process, an alternative waste acid neutralizing process, Journal of Geochemical Exploration, 62, pp. 337-346. https://doi.org/10.1016/S0375-6742(98)00002-8
  2. Eric H. Oelkers, 2001 : An experimental study of forsterite dissolution rates as a function of temperature and aqueous Mg and Si concentrations, Chemical Geology, 175, pp. 485-494. https://doi.org/10.1016/S0009-2541(00)00352-1
  3. Jodi J. Rosso, J.Donald Rimstidt, 2000 : A high resolution study of forsterite dissolution rates", Geochimica et Cosmochimica Acta, 64(5), pp. 797-811. https://doi.org/10.1016/S0016-7037(99)00354-3
  4. Oleg S Pokrovsky, Jacques Schott, 2000 : Kinetics and mechanism of forsterite dissolution at $25{^{\circ}C}$ and pH from 1 to 12, Geochimica et Cosmochimica Acta, 64(19), pp. 3313-3325. https://doi.org/10.1016/S0016-7037(00)00434-8
  5. Daniel E. Giammar, Robert G., Bruant Jr., and Catherine A. peters, 2005 : Forsterite dissolution and magnesite precipitation at conditions relevant for deep saline aquifer storage and sequestration of carbon dioxide, Chemical Geology, 217, pp. 257-276. https://doi.org/10.1016/j.chemgeo.2004.12.013
  6. Sanemasa, I., Yoshida, M., Ozawa, T., 1972 : The dissolution of olivine in aqueous solutions of inorganic acids, Bull. Chem. Soc. Jpn. 45, pp. 1741-1746. https://doi.org/10.1246/bcsj.45.1741
  7. Josep M. Soler, et al., 2008 : Compositon and Dissolution Kinetics of Garnierite from the Loma de Hierro Ni-Laterite Deposit, Venezuela, Chemical Geology, 249, pp. 191-202. https://doi.org/10.1016/j.chemgeo.2007.12.012
  8. Daniel E. Giammar, Robert G., Bruant Jr., and Catherine A. peters, 2005 : Forsterite dissolution and magnesite precipitation at conditions relevant for deep saline aquifer storage and sequestration of carbon dioxide, Chemical Geology, 217, pp. 257-276. https://doi.org/10.1016/j.chemgeo.2004.12.013
  9. P. G. Caceres and E. K. Attiogbe, 1997 : Thermal Decompositon of Dolomite and the Extraction of Its Constituents, Mineral Eng., 10(10), pp. 1165-1176. https://doi.org/10.1016/S0892-6875(97)00101-5
  10. Maud Gautelier, Jacques Schott and Eric H. Oelkers, 2007 : An Experimental Study of Dolomite Dissolution Rates at 80 as a Function of Chemical Affinity and Solution Composition, Chemical Geology, 242, pp. 509-517. https://doi.org/10.1016/j.chemgeo.2007.05.008
  11. Xiaolong Wang, M. Mercedes Maroto-Valer, 2011 : Dissolution of serpentine using recyclable ammonium salts for $CO_{2}$ mineral carbonation, Fuel, 90(3), pp. 1229-1237. https://doi.org/10.1016/j.fuel.2010.10.040
  12. Bong Chan Ban, Hyo Soo Kim, Gwang Hyun Han : Manufacturing of Mg(OH)2 and MgO by mechanochemical method from Fe-Ni slag, Kr. Unexamined Patent Publication, 10-2010-0085618.

Cited by

  1. Development of Autoclaved Aerated Concrete from Mechanically Activated Magnesium-Rich Nickel Slag vol.30, pp.7, 2018, https://doi.org/10.1061/(ASCE)MT.1943-5533.0002330
  2. 페로니켈슬래그 미분말 및 혼화재의 복합사용이 VR 하수관 강도발현에 미치는 영향분석 vol.6, pp.3, 2013, https://doi.org/10.14190/jrcr.2018.6.3.214
  3. 페로니켈슬래그 미분말 및 혼화재의 복합사용에 따른 모르타르의 강도 및 내구성 평가 vol.7, pp.3, 2019, https://doi.org/10.14190/jrcr.2019.7.3.262
  4. 페로니켈슬래그 순환자원을 활용한 점토기와의 성능평가 vol.21, pp.4, 2013, https://doi.org/10.5345/jkibc.2021.21.4.281