DOI QR코드

DOI QR Code

Experimental study on Mechanical Properties and Optimum Mix Design of Sulfur-Rubber Concrete (SRC)

황(黃)-고무 콘크리트의 역학적(力學的) 특성(特性)과 최적배합비(最適配合比)에 관한 연구(硏究)

  • Na, Okpin (Korea Railroad Research Institute) ;
  • Lee, Jaesung (Hannam University, Department of Architectural Engineering)
  • Received : 2012.07.13
  • Accepted : 2012.11.23
  • Published : 2013.02.28

Abstract

Recently, as the registration of vehicles increases, the utilization of the waste tires is emerging as environmental issues. Crumb rubber reproduced by scrap tires has been reused up to 25% in the construction field. The purpose of this paper is to investigate the mechanical properties of sulfur-rubber concrete (SRC) and to suggest the optimum mix design in terms of the compressive strength. Specimens were prepared with various mixing parameters: amount of sulfur, rubber, and micro-fillers. Two casting processes were also mentioned; dry process and wet process. The results mainly showed that the compressive strength of SRC decreased with an increment of rubber content. However, adding micro-filler and adjusting sulfur contents could improve the compressive strength of SRC. Optimum values of sulfur and rubber content were selected by workability and compressive strength of SRC. SRC can be applied to road constructions where high strength of concrete is not concerned, to wall panels that require low unit weight, to construction of median in highways to resist high impact load, and in sound barriers to absorb sound waves.

국내 자동차 사용이 증가하면서 폐타이어의 재활용에 대한 관심이 고조되고 있다. 폐타이어의 재활용을 위한 처리방법중 분말가공 형태는 25%로서 건설현장에서 다양하게 사용되고 있다. 본 연구에서는 황과 폐타이어를 이용한 콘크리트(SRC: Sulfur-Rubber Concrete)의 물리적 특성을 파악하여 최적배합비를 제안하는데 그 목적이 있다. 이를 위해 황과 폐타이어의 배합양을 달리하여 압축강도 실험을 수행하였다. 더불어 SRC의 제작과정을 2개의 배합방법(건조배합과정 및 습윤배합 과정)에 따라서 각각 그 특성을 평가하였다. 그 결과 고무의 혼입률이 증가할수록 SRC의 압축강도는 감소함을 알 수 있었으며, 마이크로 충진재의 첨가와 황 혼입률 조절은 압축강도를 향상시켰다. 또한 SRC의 황의 혼입률을 조절하여 강도의 최적값을 제안하였다. 이러한 SRC는 도로포장이나 경량벽체 또는 충격에너지 흡수율이 높은 건설 분야에 적용될 수 있을 것으로 판단된다.

Keywords

References

  1. Korea Tire Manufacturers Association, 2010: www.kotma. or.kr.
  2. Bae, J.S., Moon, J.S., Ko, Y.Z., and Kim, J.W., 1996: Performance Evaluation of Wasted Tire - Chip Added Concrete Road Pavement , KSCE , 16(3), pp. 235-247.
  3. Kim, K.W., Kweon, S.J., Lee, J.Y., and Lee, S.J., 2000: Characteristics of Polymer-Modified Dry-mix CRM Asphalt Concretes, KSCE, 20(1), pp. 57-65.
  4. Kim, N., 2003: Experimental Performance Characteristics of Crumb Rubber-Modified (CRM) Asphalt Concrete, KOSHAM, 3(2), pp. 89-97.
  5. Song, H., Jo, Y.K., and Soh, Y.S., 1996: A Study on the Fundamental Properties of Cement Mortar Using Polymer Coated Crumb Rubber, KCI, 8(6), pp. 163-172.
  6. Seok-Kyun Park, 2007: Development of Green Cement Type Grouting Materials with High Toughness and Non- Shrinkage Including Powder of Waste Tire and Resin, KCI, 19(5), pp. 623-630. https://doi.org/10.4334/JKCI.2007.19.5.623
  7. Mun-Hwan Lee, and Sea-Hyun Lee, 2008: Fundamental Study of Fire-Proof Characteristics of High Strength Concrete Using Meta-Kaolin and Waste Tire Chip, KCI, 20(1), pp. 89-97. https://doi.org/10.4334/JKCI.2008.20.1.089
  8. Biel,T.D., and Lee, H., 1994: Use of recycled tire rubbers in concrete, Proc. ASCE 3rd Mat. Engineering. Conf., Infrastructure: New Mat. and Methods of Repair, pp. 351-358.
  9. Eldin, N.N., and Senouci, A.B., 1993: Rubber-tire particles as concrete aggregate, J. Mat. in Civil Engineering., ASCE, 5(4), pp. 478-496. https://doi.org/10.1061/(ASCE)0899-1561(1993)5:4(478)
  10. Epps, J.A.,1994: Uses of recycled rubber tires in highways, Synthesis of highway practice 198, Transportation Research Board, National Research Council, Washington, D.C.
  11. Schimizze, R., Nelson, J., Amirkhanian, S. et al., 1994: Use of waste rubber in light-duty concrete pavements, Proc., ASCE 3rd Mat. Engineering. Conf., Infrastructure: New Mat. and Methods of Repair, pp. 367-374.
  12. Segre, N., and Joekes, I., 2000: Use of tire rubber particles as addition to cement paste, Cement and Concrete Research, 30, pp. 1421-1425. https://doi.org/10.1016/S0008-8846(00)00373-2
  13. Topcu, I.B., 1997: Assessment of the brittleness index of rubberized concretes, Cement and Concrete Research, 27(2), pp. 177-183. https://doi.org/10.1016/S0008-8846(96)00199-8
  14. Topcu, I.B., 1995: The properties of rubberized concretes, Cement and Concrete Research, 25, pp. 304-310. https://doi.org/10.1016/0008-8846(95)00014-3
  15. Li, G., Stubblefield, M.A., Garrick, G. et al., 2004: Development of waste tire modified concrete, Cement and Concrete Research, 34, pp. 2283-2289. https://doi.org/10.1016/j.cemconres.2004.04.013
  16. Gneyisi, E., Gesolu, M., and zturan, T., 2004: Properties of rubberized concretes containing silica fume, Cement and Concrete Research, 34, pp. 2390-2317.
  17. McBee, W.C., Sullivan, T.A., and Jon, B.W., 1985: Industrial Evaluation of Sulfur Concrete in Corrosive Environments, Mining Engineering.
  18. Gillott, J.E., Jordann, I.J., Loov, R.E., and Shrive, N.G., 1983: Effect of Different Aggregates on Durability of Sulphur Concretes, Durability of Building Materials, 1, pp. 255-273.
  19. Vroom, A.H., 1998: Sulfur Concrete Goes Global, Concrete International, ACI, 20, pp. 68-71.
  20. Dean-Mo Liu, 1997: Influence of Porosity and Pore Size on the Compressive Strength of Porous Hydroxyapatite Ceramic, Ceramics International, 23, pp. 135-139. https://doi.org/10.1016/S0272-8842(96)00009-0

Cited by

  1. Solidification/stabilization of ASR fly ash using Thiomer material: Optimization of compressive strength and heavy metals leaching vol.70, 2017, https://doi.org/10.1016/j.wasman.2017.09.010