DOI QR코드

DOI QR Code

Compressive Sensing: From Theory to Applications, a Survey

  • Received : 2012.08.08
  • Accepted : 2013.06.27
  • Published : 2013.10.31

Abstract

Compressive sensing (CS) is a novel sampling paradigm that samples signals in a much more efficient way than the established Nyquist sampling theorem. CS has recently gained a lot of attention due to its exploitation of signal sparsity. Sparsity, an inherent characteristic of many natural signals, enables the signal to be stored in few samples and subsequently be recovered accurately, courtesy of CS. This article gives a brief background on the origins of this idea, reviews the basic mathematical foundation of the theory and then goes on to highlight different areas of its application with a major emphasis on communications and network domain. Finally, the survey concludes by identifying new areas of research where CS could be beneficial.

Keywords

References

  1. J. Claerbout and F.Muir, "Robust modeling with erratic data: Geo-physics," Geophysics, vol. 38, no. 5, pp. 826-844, Oct. 1973. https://doi.org/10.1190/1.1440378
  2. B. Kashin, "The widths of certain finite dimensional sets and classes of smooth functions," Math. USSR Izv., vol. 41, no. 2, pp. 334-351, 1977.
  3. E. Gluskin, "Norms of random matrices and widths of finite-dimensional sets," Math. USSR-Sbornik, vol. 48, p. 173, 1984. https://doi.org/10.1070/SM1984v048n01ABEH002667
  4. F. Santosa and W. Symes, "Linear inversion of band-limited reflection seismograms," SIAM J. Scientific Statistical Comput., vol. 7, p. 1307, 1986. https://doi.org/10.1137/0907087
  5. L. Rudin, S. Osher, and E. Fatemi, "Nonlinear total variation based noise removal algorithms," Physica D: Nonlinear Phenomena, vol. 60, no. 1-4, pp. 259-268, 1992. https://doi.org/10.1016/0167-2789(92)90242-F
  6. S. Mallat, A Wavelet Tour of Signal Processing. Academic Pr., 1999.
  7. M. Rudelson, "Random vectors in the isotropic position," Arxiv preprint math/9608208, 1996.
  8. P. Schmieder, A. Stern, G. Wagner, and J. Hoch, "Application of nonlinear sampling schemes to COSY-type spectra," J. Biomolecular NMR, vol. 3, no. 5, pp. 569-576, 1993.
  9. M. Unser, "Sampling-50 years after Shannon," Proc. IEEE, vol. 88, no. 4, pp. 569-587, 2000. https://doi.org/10.1109/5.843002
  10. E. Novak, "Optimal recovery and n-widths for convex classes of functions," J. Approximation Theory, vol. 80, no. 3, pp. 390-408, 1995. https://doi.org/10.1006/jath.1995.1025
  11. S. Mallat and Z. Zhang, "Matching pursuits with time-frequency dictionaries," IEEE Trans. Signal Process., vol. 41, no. 12, pp. 3397-3415, 1993. https://doi.org/10.1109/78.258082
  12. D. Donoho, "Compressed sensing," IEEE Trans. Inf. Theory, vol. 52, no. 4, pp. 1289-1306, 2006. https://doi.org/10.1109/TIT.2006.871582
  13. E. Candes, J. Romberg, and T. Tao, "Stable signal recovery from incomplete and inaccurate measurements," Commun. Pure Applied Math., vol. 59, no. 8, pp. 1207-1223, 2006. https://doi.org/10.1002/cpa.20124
  14. E. Candes and J. Romberg, "Sparsity and incoherence in compressive sampling," Inverse Problems, vol. 23, p. 969, 2007. https://doi.org/10.1088/0266-5611/23/3/008
  15. M. Wakin, "An introduction to compressive sampling," IEEE Signal Process. Mag., 2008.
  16. E. Candes, "The restricted isometry property and its implications for compressed sensing," Comptes Rendus Mathematique, vol. 346, no. 9-10, pp. 589-592, 2008. https://doi.org/10.1016/j.crma.2008.03.014
  17. E. Candes, J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Trans. Inf. Theory, vol. 52, no. 2, p. 489, 2006. https://doi.org/10.1109/TIT.2005.862083
  18. Z. Chen and J. Dongarra, "Condition numbers of Gaussian random matrices," SIAM J. Matrix Analysis Appl., vol. 27, no. 3, pp. 603-620, 2006.
  19. E. Candes and T. Tao, "Near-optimal signal recovery from random projections: Universal encoding strategies?," IEEE Trans. Inf. Theory, vol. 52, no. 12, pp. 5406-5425, 2006. https://doi.org/10.1109/TIT.2006.885507
  20. E. Candes, M.Wakin, and S. Boyd, "Enhancing sparsity by reweighted l 1 minimization," J. Fourier Analysis Appl., vol. 14, no. 5, pp. 877-905, 2008. https://doi.org/10.1007/s00041-008-9045-x
  21. E. Candes and J. Romberg, "Practical signal recovery from random projections," IEEE Trans. Signal Process., 2005.
  22. Y. Sharon, J. Wright, and Y. Ma, "Computation and relaxation of conditions for equivalence between l1 and l0 minimization," CSL Tech. Rep. UILU-ENG-07-2208, Univ. of Illinois, Urbana-Champaign, 2007.
  23. D. Donoho and J. Tanner, "Sparse nonnegative solution of underdetermined linear equations by linear programming," Proc. Nat. Academy Sci. United States of America, vol. 102, no. 27, p. 9446, 2005. https://doi.org/10.1073/pnas.0502269102
  24. J. Tropp and A. Gilbert, "Signal recovery from random measurements via orthogonal matching pursuit," IEEE Trans. Inf. Theory, vol. 53, no. 12, p. 4655, 2007. https://doi.org/10.1109/TIT.2007.909108
  25. T. Blumensath and M. Davies, "Iterative hard thresholding for compressed sensing," Applied and Computational Harmonic Analysis, vol. 27, no. 3, pp. 265-274, 2009. https://doi.org/10.1016/j.acha.2009.04.002
  26. D. Donoho, A. Maleki, and A. Montanari, "Message-passing algorithms for compressed sensing," Proc. Nat. Academy Sci., vol. 106, no. 45, p. 18914, 2009. https://doi.org/10.1073/pnas.0909892106
  27. E. Cand`es and B. Recht, "Exact matrix completion via convex optimization," Foundations Computational Math., vol. 9, no. 6, pp. 717-772, 2009. https://doi.org/10.1007/s10208-009-9045-5
  28. S. Chen, D. Donoho, and M. Saunders, "Atomic decomposition by basis pursuit," SIAM Rev., vol. 43, no. 1, pp. 129-159, 2001. https://doi.org/10.1137/S003614450037906X
  29. W. Lu and N. Vaswani, "Modified basis pursuit denoising (modified BPDN) for noisy compressive sensing with partially known support," in Proc. ICASSP, 2010, pp. 3926-3929.
  30. R. Tibshirani, "Regression shrinkage and selection via the lasso," J. Royal Statistical Society. Series B (Methodological), pp. 267-288, 1996.
  31. B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, "Least angle regression," Annals of statistics, vol. 32, no. 2, pp. 407-451, 2004. https://doi.org/10.1214/009053604000000067
  32. B. Recht, M. Fazel, and P. Parrilo, "Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization," SIAM Rev., vol. 52, no. 3, pp. 471-501, Aug. 2010. https://doi.org/10.1137/070697835
  33. D. Needell and R. Vershynin, "Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit," Foundations computational math., vol. 9, no. 3, pp. 317-334, 2009. https://doi.org/10.1007/s10208-008-9031-3
  34. D. Donoho, Y. Tsaig, I. Drori, and J. Starck, "Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit," 2006.
  35. D. Needell and J. Tropp, "CoSaMP: Iterative signal recovery from incomplete and inaccurate samples," Applied Comput. Harmonic Analysis, vol. 26, no. 3, pp. 301-321, 2009. https://doi.org/10.1016/j.acha.2008.07.002
  36. W. Dai and O. Milenkovic, "Subspace pursuit for compressive sensing signal reconstruction," IEEE Trans. Inf. Theory, vol. 55, no. 5, pp. 2230-2249, 2009. https://doi.org/10.1109/TIT.2009.2016006
  37. M. Figueiredo, R. Nowak, and S. Wright, "Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems," IEEE J. Sel. Topics Signal Process., vol. 1, no. 4, pp. 586-597, 2008.
  38. E. Liu and V. Temlyakov, "Orthogonal super greedy algorithm and applications in compressed sensing," IEEE Trans. Inf. Theory, vol. 58, no. 4, pp. 2040-2047, Apr. 2012. https://doi.org/10.1109/TIT.2011.2177632
  39. D. Donoho, "De-noising by soft-thresholding," IEEE Trans. Inf. Theory, vol. 41, no. 3, pp. 613-627, 2002.
  40. P. Indyk and M. Ruzic, "Near-optimal sparse recovery in the l1 norm," in Proc. IEEE FOCS, 2008, pp. 199-207.
  41. R. Berinde, P. Indyk, and M. Ruzic, "Practical near-optimal sparse recovery in the l1 norm," in Proc. Allerton Conf. Commun., Control, Comput., 2009, pp. 198-205.
  42. R. Berinde and P. Indyk, "Sequential sparse matching pursuit," in Proc. Allerton Conf. Commun., Control, Comput., 2010, pp. 36-43.
  43. D. Baron, S. Sarvotham, and R. Baraniuk, "Bayesian compressive sensing via belief propagation," IEEE Trans. Signal Process., vol. 58, no. 1, pp. 269-280, 2009.
  44. A. Gilbert, S. Muthukrishnan, and M. Strauss, "Improved time bounds for near-optimal sparse Fourier representations," in Proc. SPIE, vol. 5914, p. 59141A, 2005.
  45. A. Gilbert, M. Strauss, J. Tropp, and R. Vershynin, "Algorithmic linear dimension reduction in the l1 norm for sparse vectors," Arxiv preprint cs/0608079, 2006.
  46. A. Gilbert, M. Strauss, J. Tropp, and R. Vershynin, "One sketch for all: Fast algorithms for compressed sensing," in Proc. ACM Symp. Theory Comput., 2007, pp. 237-246.
  47. R. Chartrand, "Exact reconstruction of sparse signals via nonconvex minimization," IEEE Signal Process. Lett., vol. 14, no. 10, pp. 707-710, 2007. https://doi.org/10.1109/LSP.2007.898300
  48. J.Murray and K. Kreutz-Delgado, "An improved FOCUSS-based learning algorithm for solving sparse linear inverse problems," in Proc. Asilomar Conf. Signals, Syst., Comput., vol. 1, 2001, pp. 347-354.
  49. R. Chartrand and W. Yin, "Iteratively reweighted algorithms for compressive sensing," in Proc. IEEE ICASSP, 2008.
  50. D. Wipf and B. Rao, "Sparse Bayesian learning for basis selection," IEEE Trans. Signal Process., vol. 52, no. 8, pp. 2153-2164, 2004. https://doi.org/10.1109/TSP.2004.831016
  51. S. Godsill, A. Cemgil, C. Fvotte, and P. Wolfe, "Bayesian computational methods for sparse audio and music processing," in Proc. EURASIP Conf. Signal Process., 2007.
  52. W. Yin, S. Osher, D. Goldfarb, and J. Darbon, "Bregman iterative algorithms for l1-minimization with applications to compressed sensing," SIAM J. Imaging Sci., vol. 1, no. 1, pp. 143-168, 2008. https://doi.org/10.1137/070703983
  53. M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, "Single-pixel imaging via compressive sampling," IEEE Signal Process. Mag., vol. 25, no. 2, pp. 83-91, 2008. https://doi.org/10.1109/MSP.2007.914730
  54. M. Wakin, J. Laska, M. Duarte, D. Baron, S. Sarvotham, D. Takhar, K. Kelly, and R. Baraniuk, "An architecture for compressive imaging," in Proc. IEEE Int. Conf. Image Process., 2006, pp. 1273-1276.
  55. D. Takhar, J. Laska, M. Wakin, M. Duarte, D. Baron, S. Sarvotham, K. Kelly, and R. Baraniuk, "A new compressive imaging camera architecture using optical-domain compression," IS&T/SPIE Computational Imaging IV, vol. 6065, 2006.
  56. P. Nagesh et al., "Compressive imaging of color images," in Proc. IEEE ICASSP, 2009, pp. 1261-1264.
  57. A. Elgammal, D. Harwood, and L. Davis, "Non-parametric model for background subtraction," Comput. Vision-ECCV, pp. 751-767, 2000.
  58. M. Piccardi, "Background subtraction techniques: A review," in Proc. IEEE Int. Conf. Syst., Man, Cybernetics, vol. 4, 2004, pp. 3099-3104.
  59. V. Cevher, A. Sankaranarayanan, M. Duarte, D. Reddy, R. Baraniuk, and R. Chellappa, "Compressive sensing for background subtraction," Comput. Vision-ECCV 2008, pp. 155-168, 2008.
  60. W. Chan, K. Charan, D. Takhar, K. Kelly, R. Baraniuk, and D. Mittleman, "A single-pixel terahertz imaging system based on compressed sensing," Appl. Phys. Lett., vol. 93, p. 121105, 2008. https://doi.org/10.1063/1.2989126
  61. M. Lustig, D. Donoho, J. Santos, and J. Pauly, "Compressed sensing MRI," IEEE Signal Process. Mag., vol. 25, no. 2, pp. 72-82, 2008. https://doi.org/10.1109/MSP.2007.914728
  62. U. Gamper, P. Boesiger, and S. Kozerke, "Compressed sensing in dynamic MRI," Magnetic Resonance Medicine, vol. 59, no. 2, pp. 365-373, 2008. https://doi.org/10.1002/mrm.21477
  63. M. Lustig, D. Donoho, and J. Pauly, "Sparse MRI: The application of compressed sensing for rapidMR imaging," Magnetic Resonance Medicine, vol. 58, no. 6, pp. 1182-1195, 2007. https://doi.org/10.1002/mrm.21391
  64. H. Jung, K. Sung, K. Nayak, E. Kim, and J. Ye, "kt FOCUSS: a general compressed sensing framework for high resolution dynamic MRI," Magnetic Resonance Medicine, vol. 61, no. 1, pp. 103-116, 2009. https://doi.org/10.1002/mrm.21757
  65. F. Herrmann and G. Hennenfent, "Non-parametric seismic data recovery with curvelet frames," Geophysical J. Int., vol. 173, no. 1, pp. 233-248, 2008. https://doi.org/10.1111/j.1365-246X.2007.03698.x
  66. G. Hennenfent and F. J. Herrmann, "Simply denoise: Wavefield reconstruction via jittered undersampling," Geophysics, pp. 19-28, 2008.
  67. N. Shental, A. Amir, and O. Zuk, "Rare-Allele detection using compressed Se(que)nsing," Arxiv preprint arXiv:0909.0400, 2009.
  68. D. Du and F. Hwang, Combinatorial Group Testing and Its Applications. World Scientific Pub. Co. Inc., 2000.
  69. M. Mohtashemi, H. Smith, D. Walburger, F. Sutton, and J. Diggans, "Sparse sensing DNA microarray-based biosensor: Is it feasible?," in Proc. SAS, 2010, pp. 127-130.
  70. F. Parvaresh, H. Vikalo, S. Misra, and B. Hassibi, "Recovering sparse signals using sparse measurement matrices in compressed DNA mi-croarrays," IEEE J. Sel. Topics Signal Process., vol. 2, no. 3, pp. 275-285, 2008. https://doi.org/10.1109/JSTSP.2008.924384
  71. R. Baraniuk and P. Steeghs, "Compressive radar imaging," in Proc. IEEE Radar Conf., 2007, pp. 128-133.
  72. M. Herman and T. Strohmer, "High-resolution radar via compressed sensing," IEEE Trans. Signal Process., vol. 57, no. 6, pp. 2275-2284, 2009. https://doi.org/10.1109/TSP.2009.2014277
  73. X. Xia, "Discrete chirp-Fourier transform and its application to chirp rate estimation," IEEE Trans. Signal Process., vol. 48, no. 11, pp. 3122-3133, 2000. https://doi.org/10.1109/78.875469
  74. R. Moses, L. Potter, and M. Cetin, "Wide angle SAR imaging," in Proc. SPIE, vol. 5427, 2004, pp. 164-175.
  75. A. Gurbuz, J. McClellan, and W. Scott, "A compressive sensing data acquisition and imaging method for stepped frequency GPRs," IEEE Trans. Signal Process., vol. 57, no. 7, 2009.
  76. L. Qu and T. Yang, "Investigation of air/ground reflection and antenna beamwidth for compressive sensing SFCWGPR migration imaging," IEEE Trans. Geosci. Remote Sens., 2012.
  77. M. A. C. Tuncer and A. C. Gurbuz, "Ground reflection removal in compressive sensing ground penetrating radars," IEEE Geosci. Remote Sens. Lett., vol. 9, no. 1, 2011.
  78. F. Ahmad, "Through-the-wall human motion indication using sparsitysriven change detection" IEEE Trans. Geosci. Remote Sens., pp.881-890, 2013.
  79. R.Walden, "Analog-to-digital converter survey and analysis," IEEE J. Sel. Areas Commun., vol. 17, no. 4, pp. 539-550, 1999. https://doi.org/10.1109/49.761034
  80. S. Kirolos, J. Laska, M. Wakin, M. Duarte, D. Baron, T. Ragheb, Y. Massoud, and R. Baraniuk, "Analog-to-information conversion via random demodulation," in Proc. IEEE Dallas/CAS Workshop DCAS, 2006, pp. 71-74.
  81. J. Laska, S. Kirolos, M. Duarte, T. Ragheb, R. Baraniuk, and Y. Massoud, "Theory and implementation of an analog-to-information converter using random demodulation," in Proc. IEEE ISCAS, 2007, pp. 1959-1962.
  82. J. Tropp, M. Wakin, M. Duarte, D. Baron, and R. Baraniuk, "Random filters for compressive sampling and reconstruction," in Proc. ICSAAP, vol. 3, 2006.
  83. M. Mishali and Y. Eldar, "From theory to practice: Sub-Nyquist sampling of sparse wideband analog signals," IEEE J. Sel. Topics Signal Process., 2009.
  84. W. Bajwa, J. Haupt, A. Sayeed, and R. Nowak, "Compressed channel sensing: A new approach to estimating sparse multipath channels," Proc. IEEE, vol. 98, no. 6, pp. 1058-1076, 2010. https://doi.org/10.1109/JPROC.2010.2042415
  85. C. Berger, S. Zhou, J. Preisig, and P. Willett, "Sparse channel estimation for multicarrier underwater acoustic communication: From subspace methods to compressed sensing," IEEE Trans. Signal Process., vol. 58, no. 3, pp. 1708-1721, 2010. https://doi.org/10.1109/TSP.2009.2038424
  86. G. Taubock, F. Hlawatsch, D. Eiwen, and H. Rauhut, "Compressive estimation of doubly selective channels in multicarrier systems: Leakage effects and sparsity-enhancing processing," IEEE J. Sel. Topics Signal Process., vol. 4, no. 2, pp. 255-271, 2010. https://doi.org/10.1109/JSTSP.2010.2042410
  87. Y. Tachwali, W. Barnes, F. Basma, and H. Refai, "The Feasibility of a fast Fourier sampling technique for wireless microphone detection in IEEE 802.22 air interface," in Proc. IEEE INFOCOM, 2010, pp. 1-5.
  88. Y. Wang, A. Pandharipande, Y. Polo, and G. Leus, "Distributed compressive wide-band spectrum sensing," IEEE Proc. Inf. Theory Appl., pp. 1-4, 2009.
  89. Z. Yu, S. Hoyos, and B. Sadler, "Mixed-signal parallel compressed sensing and reception for cognitive radio," in Proc. IEEE ICASSP, 2008, pp. 3861-3864.
  90. Z. Tian, Y. Tafesse, and B. M. Sadler, "Cyclic feature detection with sub-Nyquist sampling for wideband spectrum sensing," IEEE J. Sel. Topics Signal Process., vol. 6, no. 1, Feb. 2012.
  91. C.-C. Huang and L.-C. Wang, "Dynamic sampling rate adjustment for compressive spectrum sensing over cognitive radio network," IEEE Wireless Commun. Lett., 2012.
  92. P. Zhang, Z. Hu, R. Qiu, and B. Sadler, "A compressed sensing based ultra-wideband communication system," in Proc. IEEE ICC, 2009, pp. 1-5.
  93. C. Luo, F.Wu, J. Sun, and C. Chen, "Compressive data gathering for largescale wireless sensor networks," in Proc. ACM MOBICOM, 2009, pp. 145- 156.
  94. Q. Ling and Z. Tian, "Decentralized sparse signal recovery for compressive sleeping wireless sensor networks," IEEE Trans. Signal Process., vol. 58, no. 7, pp. 3816-3827, 2010. https://doi.org/10.1109/TSP.2010.2047721
  95. S. Fu, X. Kuai, R. Zheng, G. Yang, and Z. Hou, "Compressive sensing approach based mapping and localization for mobile robot in an indoor wireless sensor network," in Proc. ICNSC, 2010, pp. 122-127.
  96. Z. Charbiwala, S. Chakraborty, S. Zahedi, Y. Kim, M. Srivastava, T. He, and C. Bisdikian, "Compressive oversampling for robust data transmission in sensor networks," in Proc. IEEE INFOCOM, 2010, pp. 1-9.
  97. Y. Zhang, M. Roughan, W. Willinger, and L. Qiu, "Spatio-temporal compressive sensing and internet traffic matrices," ACM SIGCOMM Comput. Commun. Rev., vol. 39, no. 4, pp. 267-278, 2009. https://doi.org/10.1145/1594977.1592600
  98. Z. Dong, S. Anand, and R. Chandramouli, "Estimation of missing RTTs in computer networks: Matrix completion vs compressed sensing," Elsevier Comput. Net., vol. 55, issue 15, Oct. 2011.
  99. S. Pudlewski and T. Melodia, "On the performance of compressive video streaming for wireless multimedia sensor networks," in Proc. IEEE ICC, 2010, pp. 1-5.
  100. A. HesamMohseni, M. Babaie-Zadeh, and C. Jutten, "Inflating compressed samples: A joint source-channel coding approach for noise-resistant compressed sensing," in Proc. IEEE ICASSP, 2009, pp. 2957-2960.
  101. C. Deng, W. Lin, B. Lee, and C. Lau, "Robust image compression based on compressive sensing," in Proc. IEEE ICME, 2010, pp. 462-467.
  102. Y. Tsaig and D. Donoho, "Extensions of compressed sensing," Signal Process., vol. 86, no. 3, pp. 549-571, 2006. https://doi.org/10.1016/j.sigpro.2005.05.029
  103. M. Cossalter, G. Valenzise, M. Tagliasacchi, and S. Tubaro, "Joint compressive video coding and analysis," IEEE Trans.Multimedia, vol. 12, no. 3, pp. 168-183, 2010. https://doi.org/10.1109/TMM.2010.2041105
  104. C. Feng, W. S. Anthea, S. Valaee, and Z. Tan, "Compressive sensing based positioning using RSS of WLAN access points," in Proc. IEEE INFOCOM, 2010, pp. 1-9.
  105. A. Tabibiazar and O. Basir, "Compressive sensing indoor localization", in Proc. IEEE SMC, 2011.
  106. L. Tong, F. Dai, Y. Zhang, J. Li, and D. Zhang, "Compressive sensing based video scrambling for privacy protection," in Proc. IEEE VCIP, 2011.
  107. Y. Zhang, M. Roughan, W.Willinger, and L. Qiu, "Spatio-temporal compressive sensing and Internet traffic matrices," in Proc. ACM SIGCOMM, 2009.
  108. M.Mardani, G.Mateos, and G. B. Giannakis, "Dynamic anomalography: Tracking network anomalies via sparsity and low rank," IEEE J. Sel. Topics Signal Process., vol. 7, no. 1, Feb 2013.
  109. S. Budhaditya, P. Duc-Son, M. Lazarescu, and S. Venkatesh, "Effective anomaly detection in sensor networks data streams," in Proc. IEEE ICDM, 2009.
  110. M. Sartipi, "Low-complexity distributed compression in wireless sensor networks" in Proc. IEEE DCC, 2012, pp. 227-236.
  111. C.-M. Yu, C.-S. Lu, and S.-Y. Kuo, "CSI: Compressed sensing-based clone identification in sensor networks", in IEEE Int. Conf. Pervasive Comput. Commun., 2012.
  112. Wireless Integrated Circuits and Systems (WICS) Group at University of Michigan. [Online]. Available: http://www.eecs.umich.edu/wics/