DOI QR코드

DOI QR Code

Implementation of integrated monitoring system for trace and path prediction of infectious disease

전염병의 경로 추적 및 예측을 위한 통합 정보 시스템 구현

  • Kim, Eungyeong (Sensor System Research Center, Korea Institute of Science and Technology) ;
  • Lee, Seok (Sensor System Research Center, Korea Institute of Science and Technology) ;
  • Byun, Young Tae (Sensor System Research Center, Korea Institute of Science and Technology) ;
  • Lee, Hyuk-Jae (Nano and Electronic Physics, Kookmin University) ;
  • Lee, Taikjin (Sensor System Research Center, Korea Institute of Science and Technology)
  • Received : 2013.07.29
  • Accepted : 2013.10.01
  • Published : 2013.10.31

Abstract

The incidence of globally infectious and pathogenic diseases such as H1N1 (swine flu) and Avian Influenza (AI) has recently increased. An infectious disease is a pathogen-caused disease, which can be passed from the infected person to the susceptible host. Pathogens of infectious diseases, which are bacillus, spirochaeta, rickettsia, virus, fungus, and parasite, etc., cause various symptoms such as respiratory disease, gastrointestinal disease, liver disease, and acute febrile illness. They can be spread through various means such as food, water, insect, breathing and contact with other persons. Recently, most countries around the world use a mathematical model to predict and prepare for the spread of infectious diseases. In a modern society, however, infectious diseases are spread in a fast and complicated manner because of rapid development of transportation (both ground and underground). Therefore, we do not have enough time to predict the fast spreading and complicated infectious diseases. Therefore, new system, which can prevent the spread of infectious diseases by predicting its pathway, needs to be developed. In this study, to solve this kind of problem, an integrated monitoring system, which can track and predict the pathway of infectious diseases for its realtime monitoring and control, is developed. This system is implemented based on the conventional mathematical model called by 'Susceptible-Infectious-Recovered (SIR) Model.' The proposed model has characteristics that both inter- and intra-city modes of transportation to express interpersonal contact (i.e., migration flow) are considered. They include the means of transportation such as bus, train, car and airplane. Also, modified real data according to the geographical characteristics of Korea are employed to reflect realistic circumstances of possible disease spreading in Korea. We can predict where and when vaccination needs to be performed by parameters control in this model. The simulation includes several assumptions and scenarios. Using the data of Statistics Korea, five major cities, which are assumed to have the most population migration have been chosen; Seoul, Incheon (Incheon International Airport), Gangneung, Pyeongchang and Wonju. It was assumed that the cities were connected in one network, and infectious disease was spread through denoted transportation methods only. In terms of traffic volume, daily traffic volume was obtained from Korean Statistical Information Service (KOSIS). In addition, the population of each city was acquired from Statistics Korea. Moreover, data on H1N1 (swine flu) were provided by Korea Centers for Disease Control and Prevention, and air transport statistics were obtained from Aeronautical Information Portal System. As mentioned above, daily traffic volume, population statistics, H1N1 (swine flu) and air transport statistics data have been adjusted in consideration of the current conditions in Korea and several realistic assumptions and scenarios. Three scenarios (occurrence of H1N1 in Incheon International Airport, not-vaccinated in all cities and vaccinated in Seoul and Pyeongchang respectively) were simulated, and the number of days taken for the number of the infected to reach its peak and proportion of Infectious (I) were compared. According to the simulation, the number of days was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days when vaccination was not considered. In terms of the proportion of I, Seoul was the highest while Pyeongchang was the lowest. When they were vaccinated in Seoul, the number of days taken for the number of the infected to reach at its peak was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days. In terms of the proportion of I, Gangneung was the highest while Pyeongchang was the lowest. When they were vaccinated in Pyeongchang, the number of days was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days. In terms of the proportion of I, Gangneung was the highest while Pyeongchang was the lowest. Based on the results above, it has been confirmed that H1N1, upon the first occurrence, is proportionally spread by the traffic volume in each city. Because the infection pathway is different by the traffic volume in each city, therefore, it is possible to come up with a preventive measurement against infectious disease by tracking and predicting its pathway through the analysis of traffic volume.

세계적으로 전파력과 병원성이 높은 신종인플루엔자, 조류독감 등과 같은 전염병이 증가하고 있다. 전염병이란 특정 병원체(pathogen)로 인하여 발생하는 질병으로 감염된 사람으로부터 감수성이 있는 숙주(사람)에게 감염되는 질환을 의미한다. 전염병의 병원체는 세균, 스피로헤타, 리케차, 바이러스, 진균, 기생충 등이 있으며, 호흡기계 질환, 위장관 질환, 간질환, 급성 열성 질환 등을 일으킨다. 전파 방법은 식품이나 식수, 곤충 매개, 호흡에 의한 병원체의 흡입, 다른 사람과의 접촉 등 다양한 경로를 통해 발생한다. 전 세계의 대부분 국가들은 전염병의 전파를 예측하고 대비하기 위해서 수학적 모델을 사용하고 있다. 하지만 과거와 달리 현대 사회는 지상과 지하 교통수단의 발달로 전염병의 전파 속도가 매우 복잡하고 빨라졌기 때문에 우리는 이를 예방하기 위한 대책 마련의 시간이 부족하다. 그러므로 전염병의 확산을 막기 위해서는 전염병의 전파 경로를 예측할 수 있는 시스템이 필요하다. 우리는 이러한 문제를 해결하기 위해서 전염병의 실시간 감시 및 관리를 위한 전염병의 감염 경로 추적 및 예측이 가능한 통합정보 시스템을 구현하였다. 이 논문에서는 전염병의 전파경로 예측에 관한 부분을 다루며, 이 시스템은 기존의 수학적 모델인 Susceptible - Infectious - Recovered (SIR) 모델을 기반으로 하였다. 이 모델의 특징은 교통수단인 버스, 기차, 승용차, 비행기를 포함시킴으로써, 도시내 뿐만 아니라 도시간의 교통수단을 이용한 이동으로 사람간의 접촉을 표현할 수 있다. 그리고 한국의 지리적 특성에 맞도록 실제 자료를 수정하였기 때문에 한국의 현실을 잘 반영할 수 있다. 또한 백신은 시간에 따라서 투여 지역과 양을 조절할 수 있기 때문에 사용자가 시뮬레이션을 통해서 어느 시점에서 어느 지역에 우선적으로 투여할지 백신을 컨트롤할 수 있다. 시뮬레이션은 몇가지 가정과 시나리오를 기반으로 한다. 그리고 통계청의 자료를 이용해서 인구 이동이 많은 주요 5개 도시인 서울, 인천국제공항, 강릉, 평창, 원주를 선정했다. 상기 도시들은 네트워크로 연결되어있으며 4가지의 교통수단들만 이용하여 전파된다고 가정하였다. 교통량은 국가통계포털에서 일일 교통량 자료를 입수하였으며, 각도시의 인구수는 통계청에서 통계자료를 입수하였다. 그리고 질병관리본부에서는 신종인플루엔자 A의 자료를 입수하였으며, 항공포털시스템에서는 항공 통계자료를 입수하였다. 이처럼 일일 교통량, 인구 통계, 신종인플루엔자 A 그리고 항공 통계자료는 한국의 지리적 특성에 맞도록 수정하여 현실에 가까운 가정과 시나리오를 바탕으로 하였다. 시뮬레이션은 신종인플루엔자 A가 인천공항에 발생하였을 때, 백신이 투여되지 않은 경우, 서울과 평창에 각각 백신이 투여된 경우의 3가지 시나리오에 대해서, 감염자가 피크인 날짜와 I (infectious)의 비율을 비교하였다. 그 결과 백신이 투여되지 않은 경우, 감염자가 피크인 날짜는 교통량이 가장 많은 서울에서 37일로 가장 빠르고, 교통량이 가장 적은 평창에서 43일로 가장 느렸다. I의 비율은 서울에서 가장 높았고, 평창에서 가장 낮았다. 서울에 백신이 투여된 경우, 감염자가 피크인 날짜는 서울이 37일로 가장 빨랐으며, 평창은 43일로 가장 느렸다. 그리고 I의 비율은 강릉에서 가장 높으며, 평창에서 가장 낮았다. 평창에 백신을 투여한 경우, 감염자가 피크인 날짜는 37일로 서울이 가장 빠르고 평창은 43일로 가장 느렸다. I의 비율은 강릉에서 가장 높았고, 평창에서는 가장 낮았다. 이 결과로부터 신종인플루엔자 A가 발생하면 각 도시는 교통량에 의해 영향을 받아 확산된다는 것을 확인할 수 있다. 따라서 전염병 발생시 전파 경로는 각 도시의 교통량에 따라서 달라지므로, 교통량의 분석을 통해서 전염병의 전파 경로를 추적하고 예측함으로써 전염병에 대한 대책이 가능할 것이다.

Keywords

References

  1. Susan S. Aronson, Timothy R. Shope, "Managing Infectious Diseases in Child Care and Schools", 3rd Edition, American Academy of Pediatrics, pp. 169-171, 2013.
  2. World Health Organization (WHO), Influenza virus activity in the world on September 2, 2012.
  3. S. Jain, R. R. Creasey, J. Himmelspach etc., "Simulation of mitigaation strategies for a pandemic influenza", Proceedings of the 2011 Winter Simulation Conference, pp. 1340-1348, 2011.
  4. S. Towers, K. V. Geisse, C. C. Tsal, Q. Han and Z. Feng, "The impact of school closures on pandemic influenza: Assessing potential repercussions using a seasonal SIR model", Math. Biosci. Eng., vol. 9, no. 2, pp. 413-430, 2012. https://doi.org/10.3934/mbe.2012.9.413
  5. S. Lee, M. Golinski, G. Chowell, "Modeling optimal age-specific vaccination strategies against pandemic influenza", Bull. Math. Biol., vol. 74, pp. 958-980, 2012. https://doi.org/10.1007/s11538-011-9704-y
  6. E. Neurirth, D. Arganbright, "The Active Modeler: Mathematical Modeling with Microsoft Excel", Belmont : Tnomson Brooks/Cde, 2004.
  7. S. Bansal, J. Read, B. Pourbohloul, L. A. Meyers, "The dynamic nature of contact networks in infectious disease epidemiology", J. Biol. Dyn., vol. 4, pp. 478-489, 2010. https://doi.org/10.1080/17513758.2010.503376
  8. M. G. Roberts, M. Maker, L. C. Jennings, G. Sertsou, N. Wilson, "A model for the spread and control of pandemic influenza in an isolated geographic region", J. R. Soc. Interface, vol. 4, pp. 325-330, 2007. https://doi.org/10.1098/rsif.2006.0176
  9. W. O. Kermack, A. G. McKendrick, "Contributions to the mathematical theory of epidemics", Proc. Roy. Soc. Lond, vol. 115, pp. 700-721, 1927.
  10. http://kostat.go.kr/
  11. http://www.kosis.kr/

Cited by

  1. Evaluation of Suitability on Disposal Site According to Occurrence Status of Avian Influenza vol.18, pp.4, 2018, https://doi.org/10.9798/KOSHAM.2018.18.4.147
  2. 인플루엔자 등 급성 호흡기계 질환과 의약품 사용의 계절적 상관성 분석 vol.28, pp.4, 2018, https://doi.org/10.4332/kjhpa.2018.28.4.402