DOI QR코드

DOI QR Code

대장균과 식물시스템에서 재조합 인간 prominiinsulin 생합성 분석

Biosynthesis of recombinant human prominiinsulin in E. coli and plant systems

  • 최유진 (순천대학교 생명산업과학대학 생물학과) ;
  • 박수현 (순천대학교 생명산업과학대학 생물학과) ;
  • 김지수 (순천대학교 생명산업과학대학 생물학과) ;
  • 위수진 (순천대학교 생명산업과학대학 생물학과) ;
  • 박기영 (순천대학교 생명산업과학대학 생물학과)
  • Choi, Yu Jin (Department of Biology, Sunchon National University) ;
  • Park, Su Hyun (Department of Biology, Sunchon National University) ;
  • Kim, Ji Su (Department of Biology, Sunchon National University) ;
  • Wi, Soo Jin (Department of Biology, Sunchon National University) ;
  • Park, Ky Young (Department of Biology, Sunchon National University)
  • 투고 : 2013.09.07
  • 심사 : 2013.09.13
  • 발행 : 2013.09.30

초록

최근 급속도로 당뇨병 환자가 증가하면서 인슐린 시장이 크게 성장하고 있다. 또한 최근 식물체를 이용하여 의약용 단백질 생산이 경제적인 측면과 안정성 측면에서 매우 효과적임이 보고되고 있어 이를 이용한 분자농업이 주목을 받고 있다. 본 연구에서는 인슐린 단백질을 식물체에서 생산하기 위한 유전자 발현 construct를 설계하기 위한 실험으로서 식물발현용 preprominiinsulin construct를 제조하기 위한 단계적 실험을 수행하였다. 우선 proinsulin이 무세포 식물 전사/번역시스템에서 성공적으로 발현됨을 확인하였다. Prominiinsulin construct를 제조하여 대장균에서 발현시키는데 성공하였으며, 이를 트립신으로 절단한 후 인간 항인슐린 항체를 이용한 western 분석을 통하여 효과적으로 A-펩타이드와 B-펩타이드가 형성되며 이후 적절하게 접힘이 일어나고 hexamer로 조립됨을 확인하였다. 이후 식물체에서 재조합 인슐린 유전자가 발현되는지를 확인하기 위하여 RFP 결합 construct를 제조하여 담배의 현탁배양세포인 BY-2 세포에 형질전환시켜 RFP 결합 preprominiinsulin이 성공적으로 발현됨을 확인 하였다. 이러한 성공적인 연구 결과를 토대로 향후 이 construct는 RFP 단백질을 제거하여 35S 프로모터에 직접 유도되는 [N 말단 ${\rightarrow}$ tobacco E2 시그널 펩타이드 ${\rightarrow}$ B-펩타이드(1-29 AA) ${\rightarrow}$ AAK ${\rightarrow}$ A-펩타이드(1-21 AA) ${\rightarrow}$ RR ${\rightarrow}$ His6 ${\rightarrow}$ KDEL ${\rightarrow}$ C 말단] construct를 제조하여 담배 식물체에 형질전환시켜 분자농업을 통해 인간 인슐린 단백질을 생산하는데 활용하고자 한다.

Recently, the number of people with diabetes is rapidly increasing, coupled with the fact that the insulin market is remarkably increasing. Therefore, molecular farming for plant-derived pharmaceutical protein production is reported as becoming more attractive than ever. In this study, we carried out experiments step by step for development of recombinant insulin constructs, which were transformed into E. coli system, in vitro transcription and translation system, and tobacco cells. At first, recombinant proinsulin protein was successfully produced in in vitro transcription and translation system with wheat germ extract. After which, recombinant construct of prominiinsulin encoded a fusion protein of 7.8 kDa with trypsin cleavage sites at N terminus and C terminus of minimized C-peptide was tried to in vitro expression using E.coli culture. After purification with His-tag column, the resulting recombinant prominiinsulin protein was processed with trypsin, and then checked insulin biosynthesis by SDS-PAGE and western blot analysis with anti-insulin monoclonal antibody. The immunoreactive product of trypsin-treated miniinsulin was identical to the predicted insulin hexamer. The construct of 35S promoter-driven preprominiinsulin recombinant gene with signal peptide region for ER-targeting and red fluorescence protein gene [N terminus ${\rightarrow}$ tobacco E2 signal peptide ${\rightarrow}$ B-peptide (1-29 AA) ${\rightarrow}$ AAK ${\rightarrow}$ A-peptide (1-21 AA) ${\rightarrow}$ RR ${\rightarrow}$ His6 ${\rightarrow}$ KDEL ${\rightarrow}$ C terminus] was transformed into BY-2 tobacco cells. A polypeptide corresponding to the 38-kDa molecular mass predicted for fusion protein was detected in total protein profiles from transgenic BY-2 cells by western analysis. Therefore, this recombinant preprominiinsulin construct can be used for generation of transgenic tobacco plants producing therapeutic recombinant insulin.

키워드

참고문헌

  1. Cardinale F, Meskiene I, Ouaked F, Hirt H (2002) Convergence and Divergence of Stress-Induced Mitogen-Activated Protein Kinase Signaling Pathways at the Level of Two Distinct Mitogen-Activated Protein Kinase Kinases. Plant Cell 14:703-711 https://doi.org/10.1105/tpc.010256
  2. Cornelissen BJ, Hooft van Huijsduijnen RA, Bol JF (1986) A tobacco mosaic virus-induced tobacco protein is homologous to the sweet-tasting protein thaumatin. Nature 321:531-532 https://doi.org/10.1038/321531a0
  3. Cowley DJ, Mackin RB (1997) Expression, purification and characterization of recombinant human proinsulin. FEBS Lett 402:124-130 https://doi.org/10.1016/S0014-5793(96)01511-6
  4. Dunn MF (2005) Zinc-ligand interactions modulate assembly and stability of the insulin hexamer - a review. Biometals 18:295-303 https://doi.org/10.1007/s10534-005-3685-y
  5. Farinas CS, Leite A, Miranda EA (2005) Aqueous extraction of recombinant human proinsulin from transgenic maize endosperm. Biotechnol Prog 21:1466-1471 https://doi.org/10.1021/bp050103r
  6. Hu X, Reddy AS (1997) Cloning and expression of a PR5-like protein from Arabidopsis: inhibition of fungal growth by bacterially expressed protein. Plant Mol Biol 34:949-959 https://doi.org/10.1023/A:1005893119263
  7. Kim MK, Park KG (2008) Endoplasmic reticulum stress and diabetes. J Kor Soc Endocrinol 23:1-8
  8. Liu M, Hodish I, Haataja L, Lara-Lemus R, Rajpal G, Wright J, Arvan P (2010) Proinsulin misfolding and diabetes: mutant INS gene-induced diabetes of youth. Trends Endocrinol Metab 21:652-659 https://doi.org/10.1016/j.tem.2010.07.001
  9. Nykiforuk CL, Boothe JG, Murray EW, Keon RG, Goren HJ, Markley NA, Moloney MM (2006) Transgenic expression and recovery of biologically active recombinant human insulin from Arabidopsis thaliana seeds. Plant Biotechnol J 4:77-85 https://doi.org/10.1111/j.1467-7652.2005.00159.x
  10. Olsen JV, Ong SE, Mann M (2004) Trypsin Cleaves Exclusively C-terminal to Arginine and Lysine Residues. Mol Cell Proteomics 3:608-614 https://doi.org/10.1074/mcp.T400003-MCP200
  11. Pietropaolo M (2013) Persistent C-peptide: what does it mean? Curr Opin Endocrinol Diabetes Obes 20:279-284 https://doi.org/10.1097/MED.0b013e3283628610
  12. Puigbo P, Bravo IG, Garcia-Vallve S (2008) E-CAI: a novel server to estimate an expected value of Codon Adaptation Index (eCAI). BMC Bioinformatics 9:1471-2105-9-65
  13. Qiao ZS, Min CY, Hua QX, Weiss MA, Feng YM (2003) In vitro refolding of human proinsulin. Kinetic intermediates, putative disulfide-forming pathway folding initiation site, and potential role of C-peptide in folding process. J Biol Chem 278:17800-17809 https://doi.org/10.1074/jbc.M300906200
  14. Sambrook J, Russell DW (2001) Molecular cloning: A Laboratory Mannual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
  15. van Kan JAL, van de Rhee MD, Zuidema D, Cornelissen BJC, Bol JF (1989) Structure of tobacco genes encoding thaumatin-like proteins. Plant Mol Biol 12:153-155 https://doi.org/10.1007/BF00020500
  16. van Loon LC, Gerritsen YAM, Ritter CE (1987) Identification, purification, and characterization of pathogenesis-related proteins from virus-infected Samsun NN tobacco leaves. Plant Mol Biol 9:593-609 https://doi.org/10.1007/BF00020536
  17. Wahren J, Jornvall H (2003) C-peptide makes a comeback. Diabetes Metab Res Rev 19:345-347 https://doi.org/10.1002/dmrr.403
  18. Weiss MA (2013) Diabetes mellitus due to the toxic misfolding of proinsulin variants. FEBS Lett 587:1942-1950 https://doi.org/10.1016/j.febslet.2013.04.044
  19. Zamani A, Sturrock RN, Ekramoddoullah AK, Liu JJ, Yu X (2004) Gene Cloning and Tissue Expression Analysis of a PR-5 Thaumatin-Like Protein in Phellinus weirii-Infected Douglas-Fir. Phytopathology 94:1235-1243 https://doi.org/10.1094/PHYTO.2004.94.11.1235
  20. WO 10-2006-0052705 (2006) Methods for the production of insulin in plants. SemBioSys Genetics Incorporated