DOI QR코드

DOI QR Code

Effects of Weathering Processes on Radioactive Cesium Sorption with Mineral Characterization in Korean Nuclear Facility Site

국내 원전 부지 내 암석의 광물학적 특성 규명 및 풍화에 따른 방사성 세슘(137Cs)의 흡착 평가

  • Chang, Seeun (Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Choung, Sungwook (Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Um, Wooyong (Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Chon, Chul-Min (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources (KIGAM))
  • 장세은 (포항공과대학교 첨단원자력공학부) ;
  • 정성욱 (포항공과대학교 첨단원자력공학부) ;
  • 엄우용 (포항공과대학교 첨단원자력공학부) ;
  • 전철민 (한국지질자원연구원 지구환경연구본부)
  • Received : 2013.09.23
  • Accepted : 2013.09.26
  • Published : 2013.09.30

Abstract

This study was to characterize the minerals in fractured and bedrock zone, and determine quantitatively sorption for radioactive cesium ($^{137}Cs$) at the Korean nuclear facility site. The rock samples were granite group that mainly consists of quartz and feldspar with 10~20% mica minerals. Chlorite was observed as secondary mineral for the rock samples collected from fractured zone, but not for bedrock samples. The $^{137}Cs$ sorption distribution coefficients increased to $K_d$ = 880~960 mL/g in the fractured zone because of the presence of secondary minerals formed by weathering processes, compared to the bedrock zone ($K_d$ = 820~840 mL/g). These results suggest that the released $^{137}Cs$ to groundwater environment could be significantly retarded in the fractured zone in the case of severe nuclear accident at the study site.

원자력 발전소 중대사고에 의해 방사성 세슘($^{137}Cs$)이 지하수계로 유출될 경우를 가정하여, 연구 지역의 깊이에 따른 암석매질의 특성을 규명하고 세슘의 흡착계수를 정량적으로 평가하였다. 대상지역인 신고리 원전 3, 4호기의 지하 암석매질은 주로 석영 및 장석류로 이루어진 화강암 계열이며, 운모류를 10~20% 함유하고 있다. 비교적 얕은 심도(6.3~7.4 m)의 파쇄대에서 2차 광물인 녹니석이 일부 포함되어 있었지만, 기반암에서는 거의 발견되지 않았다. $^{137}Cs$의 흡착분배계수($K_d$)는 파쇄대 지역에서 약 880~960 mL/g로 기반암 지역에서의 820~840 mL/g보다 비교적 높게 나타났으며, 이는 파쇄대에 포함되어 있는 풍화생성물인 2차 광물들에 의한 영향으로 판단된다. 따라서 $^{137}Cs$이 지하 매질로 유출될 경우 대부분은 천부 지역에 흡착되어 세슘에 의한 오염 확산 속도가 지연될 것이라고 예상되며, 이러한 결과는 원자력 발전소 안정성 평가인자 자료로 활용될 것으로 기대된다.

Keywords

References

  1. Back, M.H. (2011) Batch experiments of Radionuclide behavior at Shin-wolsung 1 and 2 reactor sites : Adsorption and Hydrodynamic Dispersion test, Report, Korea Atomic Energy Research Institute (in Korean).
  2. Kim, S.S. (2009) Batch experiments of Radionuclide behavior at Shin-gori 1 and 2 reactor sites : Adsorption and Hydrodynamic Dispersion test, Report, Korea Atomic Energy Research Institute (in Korean).
  3. Akiba, D. Hashimoto, H., and Kanno, T. (1989) Distribution coefficient of cesium and cation exchange capacity of minerals and rocks, Journal of Nuclear Science and Technology, 27, 275-279.
  4. Anderson, K. (1983) Transport of Radionuclides in Water/ Mineral Systems, Chalmers University of Technology.
  5. ASTM (2001) Standard Test Method for Distribution Ratios by the Short-Term Batch Method, ASTM D4319-93, American Society of Testing Materials, USA.
  6. Bunzl, K., Kracke, W., Schimmack, W., and Zelles, L. (1998) Forms of fallout $^{137}Cs$ and $^{239+240}Pu$ in successive horizons of a forest soil, Journal of Environmental Radioactivity, 39(1), 55-68. https://doi.org/10.1016/S0265-931X(97)00042-8
  7. Cha, H.J., Kang, M.J., Chung, G.H., Choi, G.S., and Lee, C.W. (2006) Accumulation of $^{137}Cs$ in soil of different bedrock geology and textures, Journal of Radioanalytical and Nuclear Chemistry, 267, 349-355. https://doi.org/10.1007/s10967-006-0054-4
  8. Cornell, R.M. (1993) Adsorption of cesium on minerals: A review, Journal of Radioanalytical and Nuclear Chemistry, 171(2), 483-500. https://doi.org/10.1007/BF02219872
  9. EPA (1999) Understanding variation in partition coefficient, Kd, values, Volume II: Review of Geochemistry and Avaliable Kd values for Cadmium, Cesium, Chromium, Lead, Plutonium, Radon, Strontium, Thorium, Tritium ($^{3}H$), and uanium, United States Environmental Protection Agency, EPA 402- R-99-004B, 5.1.8.
  10. Huitti, T., Hakanen, M., and Lindberg, A. (1998) Sorption of Cesium on Olkiluoto Mica Gneiss, Granodiorite and Granite, POSIVA 98-11, POSIVA Oy, Helsinki.
  11. Ishikawa, N.K., Uchida, S., and Tagami, K. (2007) Distribution coefficients for $^{85}Sr$ and $^{137}Cs$ in Japanese agricultural soils and their correlations with soil properties, Jounal of Radioanalytical and Nuclear Chemistry, 277(2), 433-439.
  12. Kim, Y., Cho, S., Kang, H.D., Kim, W., Lee, H.R., Doh, S.H., Kim, K., Yun, S.G., Kim, D.S., and Jeong, G.Y. (2006) Radiocesium reaction with illite and organic matter in marine sediment, Marine Pollution Bulletin, 52, 659-665. https://doi.org/10.1016/j.marpolbul.2005.10.017
  13. Kim, Y., Kim, K., Kand, H.D., Kim, W., Doh, S.H., Kim, D.S., and Kim, B.K. (2007) The accumulation of radiocesium in coarse marine sediment: Effects of mineralogy and oramic matter, Marine Pollution Bulletin, 54(9), 1341-1350. https://doi.org/10.1016/j.marpolbul.2007.06.003
  14. Lee, M.H., Lee, C.W., and Boo, B.H. (1997) Distribution and characteristics of $^{239,240}Pu$ and $^{137}Cs$ in the soil of Korea, Journal of Environmental Radioactivity, 47, 1-16.
  15. Oscarson, D.W., Watson, R.L., and Miller, H.G. (1987) The interaction of trace levels of cesium with montmorillonitic and illitic clays, Applied Clay Science, 2, 29-39. https://doi.org/10.1016/0169-1317(87)90012-3
  16. Park, C.K., Hahn, P.S., and Park, H.H. (1994) Journal of Korean Nuclear Society, 26, 461.
  17. Parkhurst, D.L. and Appelo, C.A.J. (1999) User's guide to PHREEQC (ver. 2)-A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, USGS, Water- Resources Investigation Report 99-4259.
  18. Prout, W. E. (1958) Adsorption of Radioactive Wastes by Savannah River Plant Soil, Soil Science, 84, 13-17.
  19. Relyea, J.F., Serne, R.J., and Rai, D. (1980) Methods for determining redionuclide retardation factors, Pacific Northwest National Laboratory, PNL-3349.
  20. Skagius, K., Svedberg, G., and Neretnieks, I. (1982) Nuclear Technology, 59, 302.
  21. Torstenfelt, B., Allard, B., and Andersson, K. (1982) Sorption of strontium and cesium on rocks and minerals, Chemical Geology, 36, 123-137. https://doi.org/10.1016/0009-2541(82)90042-0
  22. Tromp, D.E. (1995) Clays as indicators of depositional and diagenetic conditions in Pennsylvanian black shales, Paradox Basin, Utah and Colorado. Master's Thesis, Colorado School of Mines.
  23. Tuttle, M.L. and Klett, T.R. (1996) Geochemistry of two interbeds in the Pennsylvanian Paradox Formation, Utah and Colorado: a record of deposition and diagenesis of repetitive cycles in a marine basin. In: Huffman, A.D. (Ed.).
  24. Um, W. (2005) Sorption and transport behavior of radionuclides in the proposed low-level radioactive waste disposal facility at the Hanford Site, Washington, Radiochemica Acta, 93, 57-63. https://doi.org/10.1524/ract.93.1.57.58295
  25. Um, W. and Papelis, C. (2004) Metal ion sorption and desorption on zeolitized tuffs from Nevada Test Site, Environmental Science and Technology, 38(2), 496-502. https://doi.org/10.1021/es0343050
  26. Um, W., Serne, R.J., Brown, C.F., and Last, G.V. (2007) U(VI) adsorption on 200-UP-1 aquifer sediments at the Hanford Site, Journal of Contaminant Hydrology, 93, 255-269. https://doi.org/10.1016/j.jconhyd.2007.03.002
  27. Vejsada, J. (2006) The uncertainties associated with the application of batch technique for distribution coefficients determination-A case study of cesium adsorption on four different bentonites, Applied Radiation and Isotopes, 64, 1538-1548. https://doi.org/10.1016/j.apradiso.2006.05.016
  28. Walton, F.W., Melnyk, T.W., Ross, J., and Skeet, A. (1984) Radionuclide Sorption Mechanisms and Rates on Granitic Rock, ACS symposium Series, 246, 46.
  29. Zachara, J.M., Smith, S.C., Liu, C., McKinley, J.P., Serne, R.J., and Gassman, P.L. (2002) Sorption of $Cs^{+}$ to micaceous subsurface sediments from the Hanford Site, USA, Geochimica et Cosmochimica Acta, 66(2), 193-211. https://doi.org/10.1016/S0016-7037(01)00759-1

Cited by

  1. Application of Yeongdong Illite to Remove Radiocesium for Severe Nuclear Accidents vol.29, pp.4, 2016, https://doi.org/10.9727/jmsk.2016.29.4.229
  2. Sorption Characteristics of Cs on Weathered Biotite vol.28, pp.3, 2015, https://doi.org/10.9727/jmsk.2015.28.3.255
  3. 화학 및 천연 응집제를 이용한 수중 Cs, Sr 제거 vol.38, pp.12, 2013, https://doi.org/10.4491/ksee.2016.38.12.662
  4. 연소 조건과 수종을 달리한 블랙카본의 물리화학적 성질 및 세슘의 흡착 특성 vol.33, pp.6, 2013, https://doi.org/10.15681/kswe.2017.33.6.689
  5. 원자력 시설 인근 수계에서 방사성 세슘 제거를 위한 일라이트 개질 연구 vol.51, pp.2, 2013, https://doi.org/10.9719/eeg.2018.51.2.113
  6. 원자력 시설물 주변에서의 방사성 오염물 거동 특성 연구 vol.51, pp.2, 2013, https://doi.org/10.9719/eeg.2018.51.2.99