DOI QR코드

DOI QR Code

Antimicrobial Treatment of Polyurethane Membrane Using Photodeposition of Nano-titanium Dioxide and Nano-silver

나노 TiO2와 나노 은의 광증착을 이용한 폴리우레탄 멤브레인의 항균성 부여 연구

  • Sul, In Hwan (Department of Materials Design Engineering, Kumoh National Institute of Technology) ;
  • Kim, Young-A (Department of Materials Design Engineering, Kumoh National Institute of Technology) ;
  • Lee, Hyun Jeong (Department of Materials Design Engineering, Kumoh National Institute of Technology) ;
  • Chae, Seog (Department of Mechatronics, Kumoh National Institute of Technology) ;
  • Min, Byung Gil (Department of Materials Design Engineering, Kumoh National Institute of Technology)
  • 설인환 (금오공과대학교 소재디자인공학과) ;
  • 김영아 (금오공과대학교 소재디자인공학과) ;
  • 이현정 (금오공과대학교 소재디자인공학과) ;
  • 채석 (금오공과대학교 전자공학부) ;
  • 민병길 (금오공과대학교 소재디자인공학과)
  • Received : 2013.08.08
  • Accepted : 2013.10.04
  • Published : 2013.10.31

Abstract

Polyurethane membrane was chosen as an alternate for Gore-Tex$^{(R)}$ used in outdoor sportswear. Antimicrobial property was induced by dispersing titanium dioxide ($TiO_2$) particles on the surface of the membrane via sonication. Furthermore, Ag particle was photodeposited on the $TiO_2$ particles via UV irradiation to enhance the photocatalytic activity. Measurements using X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy showed that $TiO_2$ and Ag particles were evenly deposited on the membrane. In addition, the antimicrobial property against Klebsiella pneumoniae and Staphylococcus aureus was validated using the shake flask method and clear zone method.

Keywords

References

  1. J. H. Park and S. D. Kim, “Dyeing Properties of Polyurethanecoated Polyester with Disperse Dyes”, Text Sci Eng, 2008, 45(3), 186-191.
  2. H. C. Cha and Y. H. Kim, “Dyeing Properties and Antibacterial Activities of Sulfadiazine Type Reactive Dyes”, Text Sci Eng, 2008, 45(4), 214-219.
  3. H. K. Shin, J. H. Min, and Y. S. Chung, “Antimicrobial Efficiency of N-halamine Based Chitosan Fibers”, Text Sci Eng, 2009, 46(2), 68-73.
  4. L. Fras-zemlji , V. Kokol, and D. akara, “Antimicrobial and Antioxidant Properties of Chitosan-based Viscose Fibres Enzymatically Functionalized with Flavonoids”, Text Res J, 2011, 81, 1532-1540. https://doi.org/10.1177/0040517511404600
  5. R. Paul, L. Bautista, M. De la Varga, J. M. Botet, E. Casals, V. Puntes, and F. Marsal, “Nano-cotton Fabrics with High Ultraviolet Protection”, Text Res J, 2010, 80, 454-462. https://doi.org/10.1177/0040517509342316
  6. H. Kan, L. Zhang, H. Xu, Z. Mao, and H. Cao, "Optimization of Conditions for Nanocrystal ZnO in-situ Growing on $SiO_{2}$- Coated Cotton Fabric", Text Res J, 2010, 80, 660-670. https://doi.org/10.1177/0040517509339228
  7. A. D. Erem, G. Ozcan, and M. Skrifvars, “Antibacterial Activity of PA6/ZnO Nanocomposite Fibers”, Text Res J, 2011, 81, 1638-1646. https://doi.org/10.1177/0040517511407380
  8. M. Shateri-Khalilabad and M. E. Yazdanshenas, “Bifunctionalization of Cotton Textiles by ZnO Nanostructures: Antimicrobial Activity and Ultraviolet Protection”, Text Res J, 2013, 83, 993-1004. https://doi.org/10.1177/0040517512468812
  9. D. Zhang, L. Chen, D. Fang, G. W. Toh, X. Yue, Y. Chen, and H. Lin, “In situ Generation and Deposition of Nano-ZnO on Cotton Fabric by Hyperbranched Polymer for Its Functional Finishing”, Text Res J, 2013, 83, 1625-1633. https://doi.org/10.1177/0040517512474362
  10. S. Anita, T. Ramachandran, R. Rajendran, C. V. Koushik, and M. Mahalakshmi, “A Study of the Antimicrobial Property of Encapsulated Copper Oxide Nanoparticles on Cotton Fabric”, Text Res J, 2011, 81, 1081-1088. https://doi.org/10.1177/0040517510397577
  11. D. S. Dimitrov, “Interactions of Antibody-conjugated Nanoparticles with Biological Surfaces”, Coll and Surf A, 2006, 282-283, 8-10. https://doi.org/10.1016/j.colsurfa.2005.11.001
  12. Q. Xu, M. A. Anderson, and J. Am, "Sol-Gel Route to Synthesis of Microporous Ceramic Membranes: Preparation and Characterization of Microporous $TiO_{2}$ and $ZrO_{2}$ Xerogels", Avartsm Adaov, 1994, 77, 1939-1945.
  13. C. T. Kresge, M. E. Leonowicz, W. J. Roth, C. Vartuli, and J. S. Beck, "Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-crystal Template Mechanism" Nature, 1992, 359, 710-712. https://doi.org/10.1038/359710a0
  14. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. Mccullen, J. B. Higgins, and J. L. Schlenker, "A New Family of Mesosporous Molecular Sieves Prepared wtih Liquid Crystal Templates" J Am Chem Soc, 1992, 114, 10834-10843. https://doi.org/10.1021/ja00053a020
  15. P. Ball, "Window, Clean Thyself!", Nature, 1995, 377, 290.
  16. G. E. Badini, K. T. V. Grattan, A. C. C. Tseung, and A. W. Palmer, “Sol-Gel Properties for Fiber Optic Sensor Applications”, Optical Fiber Technol, 1996, 2, 378-386. https://doi.org/10.1006/ofte.1996.0043
  17. E. Stathatos, D. Tsiourvas, and P. Lianos, “Titanium Dioxide Films Made from Reverse Micelles and Their Use for the Photocatalytic Degradation of Adsorbed Dyes”, Colloids and Surfaces A, 1999, 149, 49-56. https://doi.org/10.1016/S0927-7757(98)00292-1
  18. S. Kim, T. Yun, and D. Hong, "Effect of Rutile Structure on $TiO_{2}$ Photocatalytic Activity", J Korean Chem Soc, 2005, 49(6), 567-574. https://doi.org/10.5012/jkcs.2005.49.6.567
  19. G. Fu, P. Vary, and C. T. Lin, "Anatase $TiO_{2}$ Nanocomposites for Antimicrobial Coatings", J Phys Chem, 2005, B109(18), 8889-8898.
  20. H. S. Bae, M. K. Lee, W. W. Kim, and C. K. Rhee, "Dispersion Properties of $TiO_{2}$ Nano-powder Synthesized by Homogeneous Precipitation Process at Low Temperatures", Coll and Surf A, 2003, 220, 169-177. https://doi.org/10.1016/S0927-7757(03)00077-3
  21. S. K. Lim, S.-K. Lee, S.-H. Hwang, and H. Kim, “Photocatalytic Deposition of Silver Nanoparticles onto Organic/Inorganic Composite Nanofibers”, Macromol Mater Eng, 2006, 291, 1265-1270. https://doi.org/10.1002/mame.200600264
  22. D. G. Yu, “Formation of Colloidal Silver Nanoparticles Stabilized by Na+poly(-glutamic acid)-silver Nitrate Complex Via Chemical Reduction Process”, Coll and Surf B, 2007, 59, 171-178. https://doi.org/10.1016/j.colsurfb.2007.05.007
  23. T. Onggar, T. Cheng, H. Hund, R. Hund, and C. Cherif, "Silvering of Inert Polyethylene Terephthalate Textile Materials: The Factors of Adjustment on Silver Release, Part II", Text Res J, 2011, 81, 1940-1948. https://doi.org/10.1177/0040517511413325
  24. T. Onggar, T. Cheng, H. Hund, R. Hund, and C. Cherif, "Metallization of Inert Polyethylene Terephthalate Textile Materials: Wet-chemical Silvering with Natural and Synthetic Polyamine, Part I", Text Res J, 2011, 81, 2017-2032. https://doi.org/10.1177/0040517511413323
  25. R. Damerchely, M. E. Yazdanshenas, A. Rashidi, and R. Khajavi, “Morphology and Mechanical Properties of Antibacterial Nylon 6/nano-silver Nano-composite Multifilament Yarns”, Text Res J, 2011, 81, 1694-1701. https://doi.org/10.1177/0040517511410104
  26. T. Maeda and Y. Nose, "A New Antibacterial Agent: Antibacterial Zeolite", Artificial Organs, 1999, 23(2), 129-130. https://doi.org/10.1046/j.1525-1594.1999.00751.x
  27. Y. Inoue, M. Hoshino, H. Takahashi, T. Noguchi, T. Murata, Y. Kanzaki, H. Hamashima, and M. Sasatsu, “Bactericidal Activity of Ag-zeolite Mediated by Reactive Oxygen Species under Aerated Conditions”, J Inorg Biochem, 2002, 92, 37-42. https://doi.org/10.1016/S0162-0134(02)00489-0
  28. E. H. Kim, H. G. Kim, and J. H. Kim, “Preparation and Properties of Chitosan/Poly(vinyl alcohol) Nanofibers Containing Silver Zeolite”, Text Sci Eng, 2013, 50(2), 132-138. https://doi.org/10.12772/TSE.2013.50.132
  29. C. Chen, C. Wang, and J. Yeh, “Improvement of Odor Elimination and Anti-bacterial Activity of Polyester Fabrics Finished with Composite Emulsions of Nanometer Titanium Dioxide-silver Particles-water-borne Polyurethane”, Text Res J, 2010, 80(4), 291-300. https://doi.org/10.1177/0040517508100626
  30. S. W. Lee, T. S. Lee, G. Li, B. B. Won, T. S. Hwang, and S. G. Lee, "Preparation and Characterization of N-doped $TiO_{2}$/ PAN Composite Nanofibers Having Photocatalytic Activity", Text Sci Eng, 2009, 46(6), 311-318.
  31. K. Koci, K. Mateju, L. Obalova, S. Krejcikova, Z. Lacny , D. Placha, L. Capek, A. Ospodkova, and O. Solcova, "Effect of Silver Doping on the $TiO_{2}$ for Photocatalytic Reduction of $CO_{2}$", Appl Catal, B, 2010, 96, 239-244. https://doi.org/10.1016/j.apcatb.2010.02.030
  32. C. Nam, Y. H. Kim, and S. Ko, “Blend Fibers of Polyacrylonitrile and Water-soluble Chitosan Derivative Prepared from Sodium Thiocyanate Solution”, J Appl Polym Sci, 2001, 82, 1620-1629. https://doi.org/10.1002/app.2001
  33. W. Chen and D. D. Dionysiou, "$TiO_{2}$ Photocatalytic Films on Stainless Steel: The Role of Degussa P-25 in Modified Sol-gel Methods", Appl Catalyst B, 2006, 62, 255-264. https://doi.org/10.1016/j.apcatb.2005.07.017
  34. V. Vamathevan, R. Amal, D. Beydoun, G. Low, and S. McEvoy, "Photocatalytic Oxidation of Organics in Water Using Pure and Silver-modified Titanium Dioxide Particles", J Photochem Photobiol, A, 2002, 148, 233-245. https://doi.org/10.1016/S1010-6030(02)00049-7
  35. H. M. Sung-Suh, J. R. Choi, H. J. Hah, S. M. Koo, and Y. C. Bae, "Comparison of Ag Deposition Effects on the Photocatalytic Activity of Nanoparticulate $TiO_{2}$ under Visible and UV Light Irradiation", J Photochem Photobiol, A, 2004, 163, 37-44. https://doi.org/10.1016/S1010-6030(03)00428-3