DOI QR코드

DOI QR Code

Effect of Graphene with Antioxidant Activity on Matrix Metalloproteinase in HT1080 Cells

항산화 활성을 가진 그래핀이 HT1080 세포에서 기질금속단백질분해효소에 미치는 영향

  • Received : 2013.08.30
  • Accepted : 2013.10.24
  • Published : 2013.10.30

Abstract

Graphene is an allotrope of carbon that is composed of one-atom-thick planar sheets. It is known to have a preventive effect on cancer in photothermal therapy and a protective effect in DNA oxidation. The effect of graphene on oxidative stress and matrix metalloproteinases (MMPs) was investigated in human fibrosarcoma HT1080 cells. The results showed that graphene specifically exerted an inhibitory effect on DNA oxidation, but it did not inhibit other oxidative stress. In addition, graphene decreased the expression and the activation of MMP-2 and MMP-9 stimulated by phenazine methosulfate-m, which induces the production of intracellular hydrogen peroxide. In particular, the expression of antioxidant enzymes, such as superoxide dismutase (SOD-2), was decreased in the HT1080 cells, indicating that the decrease in the expression level of SOD was due to the antioxidant effect of graphene. These results suggest that the inhibitory effect of oxidative stress in the presence of graphene could inhibit the expression of MMPs in HT1080 cells. Based on the above results, graphene may have chemoprevention properties through inhibition of MMP-2 and MMP-9 related to metastasis.

그래핀(graphene)은 원자 하나의 두께를 가지는 흑연(graphite)의 단층으로서 탄소구조체들 중 하나이다. 그래핀은 최근 의학분야에서 광열요법을 이용한 암 발생의 예방효과와 DNA의 산화에 대한 보효효과를 가진다고 밝혀진 바 있다. 본 연구에서는 사람 섬유아육종세포(HT1080)에서 산화 스트레스와 MMPs에 대한 그래핀의 효과가 조사되었다. 항산화 효과에 대한 연구에서 그래핀은 DNA 산화에 대한 억제효과를 특이하게 나타내었으나 다른 산화 스트레스는 억제하지 않았다. 뿐만 아니라 그래핀은 세포 내 과산화수소를 생성시키는 phenazinemethosulfate(PMS)에 의하여 자극된 MMP-2 및 MMP-9의 발현과 활성을 감소시켰다. 특히 superoxide dismutase(SOD-2)와 같은 항산화 효소의 발현이 HT1080세포에서 감소하였는데, 이것이 시사하는 바는 SOD 발현수준의 감소가 그래핀의 항산화 효과로부터 기인 되었다는 것을 나타낸다. 이상의 결과로 그래핀의 존재에서 산화스트레스의 억제효과가 HT1080 세포에서 MMP-9의 활성과 발현을 감소시킬 수 있다는 것을 암시하고 있다. 이러한 연구 결과를 바탕으로 그래핀은 암 전이와 관련 있는 MMP-2 및 MMP-9의 활성과 발현의 억제를 통하여 암 억제에 도움을 줄 수 있어, 산업화를 위한 하나의 우수한 생의학 응용소재로 이용될 수 있으리라 기대된다.

Keywords

References

  1. Bandyopadhyay, U., Das, D. and Banerjee, R. K. 1999. Reactive oxygen species: Oxidative damage and pathogenesis. Curr Sci 77, 658-666.
  2. Basset, P., Okada, A., Chenard, M. P., Kannan, R., Stoll, I., Anglard, P., Bellocq, J. P. and Rio, M. C. 1997. Matrix metalloproteinases as stromal effectors of human carcinoma progression: therapeutic implications. Matrix Biol 15, 535-541. https://doi.org/10.1016/S0945-053X(97)90028-7
  3. Chambers, A. F. and Matrisian, L. M. 1997. Changing views of the role of matrix metalloproteinases in metastasis. J Natl Cancer Inst 89, 1260-1270. https://doi.org/10.1093/jnci/89.17.1260
  4. Choi, G., Jeong, C., Kim, J., Kwak, J., Shin, Y., Lee, S., Cho, S., Choi, S. and Heo, H. 2009. Effect of storage temperature and water activity on antioxidant activities of powdered green tea extracts. Korean J Food Preserv 16, 333-341.
  5. Curran, S. and Murray, G. I. 1999. Matrix metalloproteinases in tumour invasion and metastasis. J Pathol 189, 300-308. https://doi.org/10.1002/(SICI)1096-9896(199911)189:3<300::AID-PATH456>3.0.CO;2-C
  6. Curry, J. D., Glaser, M. C. and Smith, M. T. 2001. Realtime reverse transcription polymerase chain reaction detection and quantification of t (1; 19)(E2A-PBX1) fusion genes associated with leukaemia. Br J Haematol 115, 826-830. https://doi.org/10.1046/j.1365-2141.2001.03190.x
  7. Feng, L. and Liu, Z. 2011. Graphene in biomedicine: opportunities and challenges. Nanomedicine 6, 317-324. https://doi.org/10.2217/nnm.10.158
  8. Fridovich, I. 1995. Superoxide radical and superoxide dismutases. Annu Rev Biochem 64, 97-112. https://doi.org/10.1146/annurev.bi.64.070195.000525
  9. Fridovich, I. 1997. Superoxide anion radical, superoxide dismutases, and related matters. J Biol Chem 272, 18515-18517. https://doi.org/10.1074/jbc.272.30.18515
  10. Gilje, S., Han, S., Wang, M., Wang, K. L. and Kaner, R. B. 2007. A chemical route to graphene for device applications. Nano Lett 7, 3394-3398. https://doi.org/10.1021/nl0717715
  11. Halliwell, B. 1997. Antioxidants and human disease: a general introduction. Nutr Rev 55, S44-S49.
  12. Hansen, M. B., Nielsen, S. E. and Berg, K. 1989. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol Methods 119, 203. https://doi.org/10.1016/0022-1759(89)90397-9
  13. Imai, J., Ide, N., Nagae, S., Moriguchi, T., Matsuura, H. and Itakura, Y. 1994. Antioxidant and radical scavenging effects of aged garlic extract and its constituents. Planta Med 60,
  14. Lee, K. W., Lee, H. J., Surh, Y. J. and Lee, C. Y. 2003. Vitamin C and cancer chemoprevention: reappraisal. Am J Clin Nutr 78, 1074-1078.
  15. Li, H. C., Yashiki, S., Sonoda, J., Lou, H., Ghosh, S. K., Byrnes, J. J., Lema, C., Fujiyoshi, T., Karasuyama, M. and Sonoda, S. 2000. Green tea polyphenols induce apoptosis in vitro in peripheral blood T lymphocytes of adult T-cell leukemia patients. Jpn J Cancer Res 91, 34-40. https://doi.org/10.1111/j.1349-7006.2000.tb00857.x
  16. Li, Y., Liu, Y., Fu, Y., Wei, T., Le Guyader, L., Gao, G., Liu, R. S., Chang, Y. Z. and Chen, C. 2011. The triggering of apoptosis in macrophages by pristine graphene through the MAPK and TGF-beta signaling pathways. Biomaterials 33, 402-411.
  17. Liao, H. F., Chen, Y. Y., Liu, J. J., Hsu, M. L., Shieh, H. J., Liao, H. J., Shieh, C. J., Shiao, M. S. and Chen, Y. J. 2003. Inhibitory effect of caffeic acid phenethyl ester on angiogenesis, tumor invasion, and metastasis. J Agr Food Chem 51, 7907-7912. https://doi.org/10.1021/jf034729d
  18. Lu, C. H., Zhu, C. L., Li, J., Liu, J. J., Chen, X. and Yang, H. H. 2010. Using graphene to protect DNA from cleavage during cellular delivery. Chem Comm 46, 3116-3118. https://doi.org/10.1039/b926893f
  19. Manian, R., Anusuya, N., Siddhuraju, P. and Manian, S. 2008. The antioxidant activity and free radical scavenging potential of two different solvent extracts of Camellia sinensis (L.) O. Kuntz, Ficus bengalensis L. and Ficus racemosa. Food Chem 107, 1000-1007. https://doi.org/10.1016/j.foodchem.2007.09.008
  20. Maniatis, T. 1989 Molecular cloning: a laboratory manual/J. Sambrook, EF Fritsch, T. Maniatis: New York: Cold Spring Harbor Laboratory Press.
  21. Milne, L., Nicotera, P., Orrenius, S. and Burkitt, M. 1993. Effects of glutathione and chelating agents on copper-mediated DNA oxidation: pro-oxidant and antioxidant properties of glutathione. Arch Biochem Biophys 304, 102-109. https://doi.org/10.1006/abbi.1993.1327
  22. Neto, A. H. C., Guinea, F., Peres, N., Novoselov, K. and Geim, A. 2009. The electronic properties of graphene. Rev Mod Phy 81, 109. https://doi.org/10.1103/RevModPhys.81.109
  23. Novoselov, K., Geim, A., Morozov, S., Jiang, D., Zhang, Y., Dubonos, S., Grigorieva, I. and Firsov, A. 2004. Electric field effect in atomically thin carbon films. Science 306, 666-669. https://doi.org/10.1126/science.1102896
  24. Novoselov, K., Geim, A. K., Morozov, S., Jiang, D., Grigorieva, M. I. K. I. V., Dubonos, S. and Firsov, A. 2005. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197-200. https://doi.org/10.1038/nature04233
  25. Oyaizu, M. 1986. Studies on products of the browning reaction. Antioxidative activities of browning reaction products prepared from glucosamine. Jpn J Nut 44, 307-315. https://doi.org/10.5264/eiyogakuzashi.44.307
  26. Rhim, T. and Choi, M. 2010. The antioxidative effects of Ampelopsis brevipedunculata extracts. Korean J Plant Res 23, 445-450.
  27. Shen, G., Jeong, W. S., Hu, R. and Kong, A. N. T. 2005. Regulation of Nrf2, NF-${\kappa}B$, and AP-1 signaling pathways by chemopreventive agents. Antioxidredox Signal 7, 1648-1663.
  28. Simon, H. U., Haj-Yehia, A. and Levi-Schaffer, F. 2000. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5, 415-418. https://doi.org/10.1023/A:1009616228304
  29. Stetler-Stevenson, W. G. 1990. Type IV collagenases in tumor invasion and metastasis. Cancer Metastasis Rev 9, 289-303. https://doi.org/10.1007/BF00049520
  30. Vihinen, P. and Kahari, V. M. 2002. Matrix metalloproteinases in cancer: prognostic markers and therapeutic targets. Int J Cancer 99, 157-166. https://doi.org/10.1002/ijc.10329
  31. Xu, L., Liu, Y., Chen, Z., Li, W., Wang, L., Wu, X., Ji, Y. and Zhao, Y. 2012. Surface-engineered gold nanorods: promising DNA vaccine adjuvant for HIV-1 treatment. Nano Lett 12, 2003-2012. https://doi.org/10.1021/nl300027p
  32. Yang, K., Zhang, S., Zhang, G., Sun, X., Lee, S. T. and Liu, Z. 2010. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett 10, 3318-3323. https://doi.org/10.1021/nl100996u
  33. Zeng, Z. S., Cohen, A. M. and Guillem, J. G. 1999. Loss of basement membrane type IV collagen is associated with increased expression of metalloproteinases 2 and 9 (MMP-2 and MMP-9) during human colorectal tumorigenesis. Carcinogenesis 20, 749-755. https://doi.org/10.1093/carcin/20.5.749
  34. Zhang, Y., Tan, Y. W., Stormer, H. L. and Kim, P. 2005. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201-204. https://doi.org/10.1038/nature04235