DOI QR코드

DOI QR Code

Development of stratospheric Lidar for observation of volcano aerosols in the stratosphere over Korea

한반도 성층권 에어로졸 관측을 위한 성층권 라이다 개발

  • Shin, Dong Ho (School of Environmental Science & Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Noh, Young Min (School of Environmental Science & Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Lee, Kwon H. (Department of Geoinformatics Engineering, Kyungil University) ;
  • Jang, Eun Suk (Faculty of Engineering, Hanzhong University) ;
  • Shin, Sung Kyun (School of Environmental Science & Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Kim, Young J. (School of Environmental Science & Engineering, Gwangju Institute of Science and Technology (GIST))
  • 신동호 (광주과학기술원 환경공학부) ;
  • 노영민 (광주과학기술원 환경공학부) ;
  • 이권호 (경일대학교 공간정보공학과) ;
  • 장은숙 (한중대학교 공학부) ;
  • 신성균 (광주과학기술원 환경공학부) ;
  • 김영준 (광주과학기술원 환경공학부)
  • Received : 2013.08.25
  • Accepted : 2013.10.28
  • Published : 2013.10.31

Abstract

We developed the three channel lidar system to measure stratospheric aerosols at the Gwangju Institute for Science and Technology (GIST), a suburban site in Republic of Korea. The system provides backscatter coefficient (${\beta}$) at 532 and 1064 nm as well as depolarization ratios (${\delta}$) at 532 nm ($2{\beta}+1{\delta}$) using the doubled Nd:YAG laser wavelength at 532 and 1064 nm. The lidar system is optimized to measure stratospheric aerosols such as volcanic ashes. This paper describes the details of the optical setup, data acquisition system, and analysis method. This study shows an example of measuring stratospheric aerosols emitted by the volcanic eruption which occurred in Mt. Nabro ($13.37^{\circ}$ N, $41.70^{\circ}$ E).

본 연구는 성층권 에어로졸의 분포와 광학적 특성을 분석하기 위하여 새로이 개발된 광주과학기술원의 라이다 시스템에 대하여 설명하고자 한다. 성층권 에어로졸의 후방산란비 산출을 위해 Nd:YAG 레이저를 광원으로 1064 nm와 532 nm 두 파장의 탄성산란 채널을 개발하였고, 편광소멸도 분석을 위해 532 nm 파장에 두 개의 편광 채널을 설치하였다. 광자계수방식과 아날로그 디지털 변환 두가지 방식을 동시에 채택하여 후방산란신호 수신 효율과 최대 관측 고도를 향상시켰다. 개발된 라이다 시스템을 이용하여 2011년 9월 22일에 한반도 상공 성층권 에어로졸관측 분석하여 예시하였다. 라이다 관측 자료 분석을 통해 532 nm 파장에서 성층권 에어로졸의 후방산란비를 산출을 통해 에어로졸의 시공간적 분포를 확인하고, 체적편광소멸도와 입자편광소멸도 산출을 통해 하고 입자의 비구형성을 판단하였다.

Keywords

References

  1. Andres, R., and A. Kasgnoc, 1998. A time-averaged inventory of subaerial volcanic sulfur emissions, Journal of Geophysical Research: Atmospheres (1984-2012), 103(D19): 25251-25261. https://doi.org/10.1029/98JD02091
  2. Behrendt, A., and T. Nakamura, 2002. Calculation of the calibration constant of polarization lidar and its dependency on atmospheric temperature, Optics Express, 10(16): 805-817. https://doi.org/10.1364/OE.10.000805
  3. Bluth, G.J., S.D. Doiron, C. C. Schnetzler, A.J. Krueger, and L.S. Walter, 1992. Global tracking of the SO2 clouds from the June, 1991 Mount Pinatubo eruptions, Geophysical Research Letters, 19(2): 151-154. https://doi.org/10.1029/91GL02792
  4. Chen, W.-N., C.-W. Chiang, and J.-B. Nee, 2002. Lidar ratio and depolarization ratio for cirrus clouds, Applied Optics, 41(30): 6470-6476. https://doi.org/10.1364/AO.41.006470
  5. Chin, M., and D.J. Jacob, 1996. Anthropogenic and natural contributions to tropospheric sulfate: A global model analysis, Journal of Geophysical Research: Atmospheres (1984-2012), 101(D13):18691-18699. https://doi.org/10.1029/96JD01222
  6. Eckhardt, S., A. Prata, P. Seibert, K. Stebel, and A. Stohl, 2008. Estimation of the vertical profile of sulfur dioxide injection into the atmosphere by a volcanic eruption using satellite column measurements and inverse transport modeling, Atmospheric Chemistry and Physics, 8(14):3881-3897. https://doi.org/10.5194/acp-8-3881-2008
  7. Freudenthaler, V., M. Esselborn, M. Wiegner, B. Heese, M. Tesche, A. Ansmann, D. Muller, D. Althausen, M. Wirth, and A. Fix, 2009. Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006, Tellus B, 61(1): 165-179. https://doi.org/10.1111/j.1600-0889.2008.00396.x
  8. Graf, H.F., J. Feichter, and B. Langmann, 1997. Volcanic sulfur emissions: Estimates of source strength and its contribution to the global sulfate distribution, Journal of Geophysical Research: Atmospheres (1984-2012), 102(D9): 10727-10738. https://doi.org/10.1029/96JD03265
  9. Halmer, M., H.-U. Schmincke, and H.-F. Graf, 2002. The annual volcanic gas input into the atmosphere, in particular into the stratosphere: a global data set for the past 100 years, Journal of Volcanology and Geothermal Research, 115(3):511-528. https://doi.org/10.1016/S0377-0273(01)00318-3
  10. Haywood, J., and O. Boucher, 2000. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review, Reviews of Geophysics, 38(4): 513-543. https://doi.org/10.1029/1999RG000078
  11. Hofmann, D., J. Barnes, M. O'Neill, M. Trudeau, and R. Neely, 2009. Increase in background stratospheric aerosol observed with lidar at Mauna Loa Observatory and Boulder, Colorado, Geophysical Research Letters, 36(15): L15808, doi: 10.1029/2009GL039008.
  12. Jager, H., and T. Deshler, 2002. Lidar backscatter to extinction, mass and area conversions for stratospheric aerosols based on midlatitude balloonborne size distribution measurements, Geophysical Research Letters, 29(19): 1929, doi:10.1029/2002GL015609.
  13. Jager, H., and T. Deshler, 2003. Correction to "Lidar backscatter to extinction, mass and area conversions for stratospheric aerosols based on midlatitude balloonborne size distribution measurements", Geophysical Research Letters, 30(7): 1382, doi:10.1029/2003GL017189.
  14. Klett, J.D., 1981. Stable analytical inversion solution for processing lidar returns, Applied Optics, 20(2): 211-220. https://doi.org/10.1364/AO.20.000211
  15. Longhurst, J.W., D.W. Raper, D.S. Lee, B.A. Heath, B. Conlan, and H.J. King, 1993. Acid deposition: a select review 1852-1990: 1. Emissions, transport, deposition, effects on freshwater systems and forests, Fuel, 72(9): 1261-1280. https://doi.org/10.1016/0016-2361(93)90125-L
  16. Mattis, I., M. Tesche, M. Grein, V. Freudenthaler, and D. Müller, 2009. Systematic error of lidar profiles caused by a polarization-dependent receiver transmission: Quantification and error correction scheme, Applied Optics, 48(14):2742-2751. https://doi.org/10.1364/AO.48.002742
  17. Muller, D., I. Mattis, B. Tatarov, Y. Noh, D. Shin, S. Shin, K. Lee, Y. Kim, N. Sugimoto, 2010. Mineral quartz concentration measurements of mixed mineral dust/urban haze pollution plumes over Korea with multiwavelength aerosol Ramanquartz lidar, Geophysical Research Letters, 37(20): L20810, doi: 10.1029/2010GL044633.
  18. Noh, Y.M., Y.J. Kim, B.C. Choi, and T. Murayama, 2007. Aerosol lidar ratio characteristics measured by a multi-wavelength Raman lidar system at Anmyeon Island, Korea, Atmospheric Research, 86(1): 76-87. https://doi.org/10.1016/j.atmosres.2007.03.006
  19. Noh, Y.M., Y.J. Kim, and D. Muller, 2008. Seasonal characteristics of lidar ratios measured with a Raman lidar at Gwangju, Korea in spring and autumn, Atmospheric Environment, 42(9): 2208-2224. https://doi.org/10.1016/j.atmosenv.2007.11.045
  20. Noh, Y.M., D. Muller, I. Mattis, H. Lee, and Y.J. Kim, 2011. Vertically resolved light-absorption characteristics and the influence of relative humidity on particle properties: Multiwavelength Raman lidar observations of East Asian aerosol types over Korea, Journal of geophysical research, 116(D6): D06206, doi: 10.1029/2010JD014873.
  21. No, Y.M., C.K. Lee, K.C. Kim, S.K. Shin, D.H. Shin, and S.C. Choi, 2013. Retrieval of Vertical Single-scattering albedo of Asian dust using Multi-wavelength Raman Lidar System, Korean Journal of Remote Sensing, 29(4): 415-421. https://doi.org/10.7780/kjrs.2013.29.4.7
  22. Ramaswamy, V., M.L. Chanin, J. Angell, J. Barnett, D. Gaffen, M. Gelman, P. Keckhut, Y. Koshelkov, K. Labitzke, and J.J. Lin, 2001. Stratospheric temperature trends: Observations and model simulations, Reviews of Geophysics, 39(1): 71-122. https://doi.org/10.1029/1999RG000065
  23. Robock, A., 2000. Volcanic eruptions and climate, Reviews of Geophysics, 38(2): 191-219. https://doi.org/10.1029/1998RG000054
  24. Sassen, K., J. Zhu, P. Webley, K. Dean, and P. Cobb, 2007. Volcanic ash plume identification using polarization lidar: Augustine eruption, Alaska, Geophysical Research Letters, 34(8): L08803, doi: 10.1029/2006GL027237.
  25. Schätzel, K., 1986. Dead time correction of photon correlation functions, Applied Physics B, 41(2):95-102.
  26. Sharma, A., and J. Walker, 1992. Paralyzable and nonparalyzable deadtime analysis in spatial photon counting, Review of Scientific Instruments, 63(12): 5784-5793. https://doi.org/10.1063/1.1143364
  27. Tatarov, B., D. Muller, D.H. Shin, S.K. Shin, I. Mattis, P. Seifert, Y.M. Noh, Y. Kim, and N. Sugimoto, 2011. Lidar measurements of Raman scattering at ultraviolet wavelength from mineral dust over East Asia, Optics Express, 19(2): 1569-1581. https://doi.org/10.1364/OE.19.001569
  28. Uchino, O., T. Sakai, T. Nagai, K. Nakamae, I. Morino, K. Arai, H. Okumura, S. Takubo, T. Kawasaki, and Y. Mano, 2012. On recent (2008-2012) stratospheric aerosols observed by lidar over Japan, Atmospheric Chemistry and Physics, 12(24): 11975-11984. https://doi.org/10.5194/acp-12-11975-2012
  29. Whiteman, D.N., 2003. Examination of the traditional Raman lidar technique. I. Evaluating the temperature-dependent lidar equations, Applied Optics, 42(15): 2571-2592. https://doi.org/10.1364/AO.42.002571
  30. Winker, D., and M. Osborn, 1992. Preliminary analysis of observations of the Pinatubo volcanic plume with a polarization-sensitive lidar. Geophysical Research Letters, 19(2): 171-174. https://doi.org/10.1029/91GL02866
  31. Witham, C., M. Hort, R. Potts, R. Servranckx, P. Husson, and F. Bonnardot, 2007. Comparison of VAAC atmospheric dispersion models using the 1 November 2004 Grimsvötn eruption, Meteorological Applications, 14(1): 27-38. https://doi.org/10.1002/met.3
  32. Yu, T., W.I. Rose, and A. Prata, 2002. Atmospheric correction for satellite-based volcanic ash mapping and retrievals using "split window" IR data from GOES and AVHRR, Journal of geophysical research, 107(D16): 4311, doi:10.1029/2001JD000706.
  33. Zhang, Q., J. Jimenez, M. Canagaratna, J. Allan, H. Coe, I. Ulbrich, M. Alfarra, A. Takami, A. Middlebrook, and Y. Sun, 2007. Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes, Geophysical Research Letters, 34(13): L13801, doi:10.1029/2007GL029979.

Cited by

  1. Development of lidar detection system for improvement of measurement range (Combined photon counting detection and analog-to-digital signal) vol.30, pp.2, 2014, https://doi.org/10.7780/kjrs.2014.30.2.8
  2. 3-D Perspectives of Atmospheric Aerosol Optical Properties over Northeast Asia Using LIDAR on-board the CALIPSO satellite vol.30, pp.5, 2014, https://doi.org/10.7780/kjrs.2014.30.5.2
  3. 두파장 스캐닝 라이다 시스템을 이용한 고해상도 미세먼지 질량 농도 산출 vol.36, pp.6, 2013, https://doi.org/10.7780/kjrs.2020.36.6.3.5