DOI QR코드

DOI QR Code

A Study on the Fabrication and Characterization of Micro Pb(Zr,Ti)O3 Film Piezoelectric Cantilever Using MEMS Process for Energy Harvesting

MEMS 공정을 통한 마이크로 Pb(Zr,Ti)O3 박막 압전 외팔보 에너지 수확소자의 제작 및 특성 연구

  • Lee, Junmyung (Department of Control and Instrumentation Engineering, Korea University) ;
  • Chun, Inwoo (Department of Control and Instrumentation Engineering, Korea University) ;
  • Kim, Moonkeun (Department of Control and Instrumentation Engineering, Korea University) ;
  • Kwon, Kwang-Ho (Department of Control and Instrumentation Engineering, Korea University) ;
  • Lee, Hyun Woo (Division of Electronic, Computer and Communication Engineering, Hanseo University)
  • 이준명 (고려대학교 제어계측공학과) ;
  • 천인우 (고려대학교 제어계측공학과) ;
  • 김문근 (고려대학교 제어계측공학과) ;
  • 권광호 (고려대학교 제어계측공학과) ;
  • 이현우 (한서대학교 전자컴퓨터통신공학부)
  • Received : 2013.09.06
  • Accepted : 2013.10.11
  • Published : 2013.11.01

Abstract

In this study, we fabricated a micro $Pb(Zr,Ti)O_3$ (PZT) film piezoelectric cantilever with a Si proof mass and dual beams through MEMS process. The size of the beam and the integrated Si proof mass were about $4,320{\mu}m{\times}290{\mu}m{\times}12{\mu}m$ and $1,380{\mu}m{\times}880{\mu}m{\times}450{\mu}m$ each. To reduce the air damping and have the larger displacement of dual beams was used for design. After mounting micro PZT film piezoelectric cantilever on shaker, we measured the resonance frequency and a output voltage while making resonant frequency changed. The resonant frequency and the highest average power of the cantilever device were 110.2 Hz and 0.36 ${\mu}W$ each, at 0.8 g acceleration and 23.7 $k{\Omega}$ load resistance, respectively.

Keywords

References

  1. S. P. Beeby, M. J. Tudor, and N. M. White, J. Meas. Sci. Technol., 17, 175 (2006). https://doi.org/10.1088/0957-0233/17/12/R01
  2. A. Kansal, J. Hsu, S. Zahedi, and M. B. Srivastava, ACM Transactions on Embedded Computing System, 6, 32 (2007). https://doi.org/10.1145/1274858.1274870
  3. S. Priya, Appl. Phys. Lett., 87, 184101 (2005). https://doi.org/10.1063/1.2119410
  4. H. C. Song, J. Y. Kang, and S. J. Yoon, J. KIEEME, 23, 28 (2010).
  5. K. P. Ashok and P. Rudra, J. Micromech. Microeng., 17, 2475 (2007). https://doi.org/10.1088/0960-1317/17/12/013
  6. M. K. Kim, B. S. Hwang, J. H. Jeong, N. K. Min, and K. H. Kwon, J. KIEEME, 24, 515 (2011).
  7. J. Q. Liu, H. B. Fang, Z. Y. Xu, X. H. Mao, X. C. Shen, D. Chen, H, Liao, and B. C. Cai, Microelectronics Journal., 39, 802 (2008). https://doi.org/10.1016/j.mejo.2007.12.017
  8. M. Kim, B. Hwang, Y. H. Ham, J. Jeong, N. K. Min, and K. H. Kwon, J. Micro/Nanolith. MEMS MOEMS., 11, 033009 (2012).
  9. M. Kim, B. Hwang, N. K. Min, J. Jeong K. H. Kwon, and K. B. Park, J. Nanosci. Nanotechnol., 11, 6510 (2011). https://doi.org/10.1166/jnn.2011.4324
  10. S. N. Yun and D. G. Kim, J. KSPSE., 13, 65 (2009).
  11. K. H. Kwon, S. Y. Kang, G. Y. Yeom, N. K. Hong, and J. H. Lee, J. Electron. Soc., 147, 1807 (2000). https://doi.org/10.1149/1.1393438
  12. A. M. Efremov, D. P Kim, and C. I. Kim, Thin Solid Films, 474, 267 (2005). https://doi.org/10.1016/j.tsf.2004.08.023
  13. Y. B. Jeon, R. Sood, J. H. Jeong, and S. G. Kim, Sensor Actuat., A122, 16 (2005).
  14. K. Sugano and O. Tabata, Microsyst. Technol., 9, 11 (2002). https://doi.org/10.1007/s00542-002-0195-5
  15. D. Shen, J. H. Park, J. H. Noh, S. Y. Choe, S. H. Kim, H. C. Wikle III, and D. J. Kim, Sensor Actuat., A154, 103 (2009).
  16. P. Gardonio, Y. S. Lee, S. J. Eloitt, and S. Debot, J. Acoust. Soc. Am., 110, 3025 (2001). https://doi.org/10.1121/1.1412448
  17. S. Wolf and R. F. M. Smith, Student Reference Manual for Electronic Instrumentation Laboratories (Pearson, Upper Saddle River, 2004) p. 80.