DOI QR코드

DOI QR Code

A Study on Etching Characteristics of SnO2 Thin Films Using High Density Plasma

고밀도 플라즈마를 이용한 SnO2 박막의 건식 식각 특성

  • Kim, Hwan-Jun (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Joo, Young-Hee (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Kim, Seung-Han (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Woo, Jong-Chang (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Kim, Chang-Il (School of Electrical and Electronics Engineering, Chung-Ang University)
  • 김환준 (중앙대학교 전자전기공학부) ;
  • 주영희 (중앙대학교 전자전기공학부) ;
  • 김승한 (중앙대학교 전자전기공학부) ;
  • 우종창 (중앙대학교 전자전기공학부) ;
  • 김창일 (중앙대학교 전자전기공학부)
  • Received : 2013.10.04
  • Accepted : 2013.10.23
  • Published : 2013.11.01

Abstract

In this paper, we carried out the investigations of both etch characteristics and mechanisms for the $SnO_2$ thin films in $O_2/BCl_3/Ar$ plasma. The dry etching characteristics of the $SnO_2$ thin films was studied by varying the $O_2/BCl_3/Ar$ gas mixing ratio. We determined the optimized process conditions that were as follows: a RF power of 700 W, a DC-bias voltage of - 150 V, and a process pressure of 2 Pa. The maximum etch rate was 509.9 nm/min in $O_2/BCl_3/Ar$=(3:4:16 sccm) plasma. From XPS analysis, the etch mechanism of the $SnO_2$ thin films in the $O_2/BCl_3/Ar$ plasma can be identified as the ion-assisted chemical reaction while the role of ion bombardment includes the destruction of the metal-oxide bonds as well as the cleaning of the etched surface form the reaction products.

Keywords

References

  1. J. F. Wager, Transparent Electronics Display Applications (SID 07 Digest, 2007) p. 1824.
  2. M. Prins, S. Zinnemers, J. Cillessen, and J. Giesbers, Appl. Phys. Lett., 70, 458 (1997). https://doi.org/10.1063/1.118180
  3. R. Presley, C. Munsee, C. Park, D. Hong, J. Wager, and D. Keszler, J. Phys. D, Appl. Phys., 37, 2810 (2004).
  4. H. Hidenori, N. Kenji, Y. Hiroshi, K. Toshio, H. Masahiro, and H. Hideo, Appl. Phys. Lett., 93, 032113 (2008). https://doi.org/10.1063/1.2964197
  5. Y. Ogo, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Kimura, M. Hirano, and H. Hosono, Physica Status Solidi., 206, 2187 (2009). https://doi.org/10.1002/pssa.200881792
  6. X. Yang, J. C. Woo, D. S. Um, and C. I. Kim, Trans. Electr. Electron. Mater., 11, 202 (2010). https://doi.org/10.4313/TEEM.2010.11.5.202
  7. S. I. Kim and K. H. Kwon, Trans. Electr. Electron. Mater., 10, 1 (2009). https://doi.org/10.4313/TEEM.2009.10.1.001
  8. J. Szuber, G. Czempik, R. Larciprete, and B. Adamowicz, Sensr and Actuators., 70, 177 (2000). https://doi.org/10.1016/S0925-4005(00)00564-5
  9. J. Szuber, G. Czempik, R. Larciprete, D. Koziej, and B. Adamowicz, Thin Soild Films, 391, 198 (2001). https://doi.org/10.1016/S0040-6090(01)00982-8
  10. M. Kwoka, L. Ottaviano, M. Passacantando, S. Santucci, G. Czempik, and J. Szubera, Thin Solid Films, 490, 36 (2005). https://doi.org/10.1016/j.tsf.2005.04.014