DOI QR코드

DOI QR Code

The Characteristics of Silicon Nitride Films Grown at Low Temperature for Flexible Display

플렉서블 디스플레이의 적용을 위한 저온 실리콘 질화물 박막성장의 특성 연구

  • Lim, Nomin (Department of Control and Instrumentation, Korea University) ;
  • Kim, Moonkeun (Department of Control and Instrumentation, Korea University) ;
  • Kwon, Kwang-Ho (Department of Control and Instrumentation, Korea University) ;
  • Kim, Jong-Kwan (Department of Electrical and Electronic Engineering, Anyang University)
  • 임노민 (고려대학교 제어계측공학과) ;
  • 김문근 (고려대학교 제어계측공학과) ;
  • 권광호 (고려대학교 제어계측공학과) ;
  • 김종관 (안양대학교 전기.전자공학과)
  • Received : 2013.09.02
  • Accepted : 2013.10.24
  • Published : 2013.11.01

Abstract

We investigated the characteristics of the silicon oxy-nitride and nitride films grown by plasma-enhanced chemical vapor deposition (PECVD) at the low temperature with a varying $NH_3/N_2O$ mixing ratio and a fixed $SiH_4$ flow rate. The deposition temperature was held at $150^{\circ}C$ which was the temperature compatible with the plastic substrate. The composition and bonding structure of the nitride films were investigated using Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Nitrogen richness was confirmed with increasing optical band gap and increasing dielectric constant with the higher $NH_3$ fraction. The leakage current density of the nitride films with a high NH3 fraction decreased from $8{\times}10^{-9}$ to $9{\times}10^{-11}(A/cm^2$ at 1.5 MV/cm). This results showed that the films had improved electrical properties and could be acceptable as a gate insulator for thin film transistors by deposited with variable $NH_3/N_2O$ mixing ratio.

Keywords

References

  1. W. D. Park and K. W. Kim, Electronic Technology Reports, 14, 103 (1993).
  2. G. H. Kim and K. S. Suh, Electronics and Telecommunications Trends, 5, 129 (2006).
  3. H. S. Joo and S. K. Joo, Journal of the Metal Finishing Society of Korea, 22, 215 (1989).
  4. V. Teixeira, P. Soares, A. Martins, J. Carneiro, and F. Cerqueira, J. Nanosci. Nanotecho., 11, 8079 (2011). https://doi.org/10.1166/jnn.2011.5084
  5. T. Cavallin, N. E. Habra, M. Casarin, F. Bordin, A. Sartori, M. Favaro, R. Gerbasi, and G. Rossetto, J. Nanosci. Nanotecho., 11, 8079 (2011). https://doi.org/10.1166/jnn.2011.5084
  6. C. K. Wong, H. Wong, V. Filip, and P. S. Chung, J. J. Appl. Phys., 46, 3202 (2007). https://doi.org/10.1143/JJAP.46.3202
  7. J. Kanicki and N. Voke, Mater. Res. Soc. Symp. Proc., 68, 167 (1986).
  8. D. A. Spee, V. D. Werf, C. H. M. J. K. Rath, and R. E. I. Schropp, J. Nanosci. Nanotecho., 11, 8202 (2011). https://doi.org/10.1166/jnn.2011.5100
  9. M. I. Alayo, I. Pereyra, W. L. Scopel, and M. C. A. Fantini, Thin Solid Films, 402, 154 (2002). https://doi.org/10.1016/S0040-6090(01)01685-6
  10. M. N. P. Carreno, J. P. Bottechia, and I. Pereyra, Thin Solid Films, 308, 219 (1997).
  11. S. H. Mohamed, Physica, B406, 211 (2011).
  12. H. J. Schliwinski, U. Schnakenberg, W. Kindbracke, H. Neff, and P. Lange, J. Electrochem. Soc., 139, 1730 (1992). https://doi.org/10.1149/1.2069484
  13. V. S. Nguyen, S. Burion, and P. Pan, J. Electrochem. Soc., 131, 2348 (1984). https://doi.org/10.1149/1.2115255
  14. A. Gupta, S. Toby, E. P. Gusev, H. C. Lu, Y. Li, M. L. Green, T, Gustafsson, and E. Garfunkel, Prog. in Surface Science, 59, 103 (1998). https://doi.org/10.1016/S0079-6816(98)00039-2
  15. G. N. Parsons, J. H. Souk, and J. Batey, J. Appl. Phys., 70, 1553 (1991). https://doi.org/10.1063/1.349544
  16. M. C. Poon, C. W. Kok, H. Wong, and P. J. Chan, Thin Solid Films, 462, 42 (2004).
  17. B. S. Sahu, A. Kapoor, P. Srivastava, O. P. Agnihotri, and S. M. Shivaprasa, Semicond. Sci. Technol., 18, 670 (2003). https://doi.org/10.1088/0268-1242/18/7/312
  18. S. P. Singh, P. Srivastava, S. Ghosh, S. A. Khan, and G. V. Prakash, J. Phys. Condens. Mater., 21, 095010 (2009). https://doi.org/10.1088/0953-8984/21/9/095010
  19. C. D. Wagner, W. M. Riggs, L. E. Davis, and J. F. Moulder, Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corporation, Eden Prairie, MN, 1995) p. 43.
  20. J. L. Bahr, A. J. Blake, J. H. Carver, J. L. Gardner, and V. Kumar, Quonr. Spectrosc. Radiative. Transfer., 12, 59 (1972). https://doi.org/10.1016/0022-4073(72)90005-2
  21. H. Ohta, A. Nagashima, M. Hori, and T. Goto, J. Appl. Phys., 89, 5083 (2001). https://doi.org/10.1063/1.1337939
  22. D. A. Shutov, S. Y. Kang, K. H. Baek, K. S. Suh, and K. H. Kwon, J. J. Appl. Phys., 47, 6970 (2008). https://doi.org/10.1143/JJAP.47.6970
  23. S. C. Baylissts and S. J. Gumant, J. Phys., 6, 4961 (1994).
  24. V. I. Kubrin, V. F. Korzo, E. G. Dorofeeva, and M. V. Kacharava, Russian Physics Journal, 26, 1014 (1983).
  25. L. D. S. Zambom and P. Verdonck, Thin Solid Films, 515, 596 (2006). https://doi.org/10.1016/j.tsf.2005.12.186
  26. J. H. Liao, J. Y. Hsieh, H. J. Lin, W. Y. Tang, C. L. Chiang, Y. S. Lo, T. B. Wu, L. W. Yang, T. Yang, K. C. Chen, and C. Y. Lu, J. Phys. D: Appl. Phys., 42, 175102 (2009). https://doi.org/10.1088/0022-3727/42/17/175102
  27. X. Guo and T. P. Ma, IEEE Elec. Dev. Lett., 19, 207 (1998). https://doi.org/10.1109/55.678546