References
- A. Azizi, On prime and weakly prime submodules, Vietnam J. Math. 36 (2008), no. 3, 315-325.
- A. Azizi, Radical formula and prime submodules, J. Algebra 307 (2007), no. 1, 454-460. https://doi.org/10.1016/j.jalgebra.2006.07.006
- A. Azizi, Radical formula and weakly prime submodules, Glasg. Math. J. 51 (2009), no. 2, 405-412. https://doi.org/10.1017/S0017089509005072
- A. Azizi and A. Nikseresht, Simplified radical formula in modules, Houston J. Math. 38 (2012), no. 2, 333-344.
- M. Behboodi, On weakly prime radical of modules and semi-compatible modules, Acta Math. Hungar. 113 (2006), no. 3, 243-254. https://doi.org/10.1007/s10474-006-0097-6
- M. Behboodi and H. Koohi, Weakly prime modules, Vietnam J. Math. 32 (2004), no. 2, 185-195.
- K. H. Leung and S. H. Man, On commutative Noetherian rings which satisfy the radical formula, Glasgow Math. J. 39 (1997), no. 3, 285-293. https://doi.org/10.1017/S0017089500032225
- S. H. Man, On commutative Noetherian rings which satisfy the generalized radical for- mula, Comm. Algebra 27 (1999), no. 8, 4075-4088. https://doi.org/10.1080/00927879908826683
- R. McCasland and M. Moore, On radicals of submodules of finitely generated modules, Canad. Math. Bull. 29 (1986), no. 1, 37-39. https://doi.org/10.4153/CMB-1986-006-7
- A. Nikseresht and A. Azizi, On arithmetical rings and the radical formula, Vietnam J. Math. 38 (2010), no. 1, 55-62.
- H. Sharif, Y. Sharifi, and S. Namazi, Rings satisfying the radical formula, Acta Math. Hungar. 71 (1996), no. 1-2, 103-108. https://doi.org/10.1007/BF00052198
- P. F. Smith, Primary modules over commutative rings, Glasg. Math. J. 43 (2001), no. 1, 103-111.