DOI QR코드

DOI QR Code

PRIME BASES OF WEAKLY PRIME SUBMODULES AND THE WEAK RADICAL OF SUBMODULES

  • Received : 2012.03.27
  • Published : 2013.11.01

Abstract

We will introduce and study the notion of prime bases for weakly prime submodules and utilize them to derive some formulas on the weak radical of submodules of a module. In particular, we will show that every one dimensional integral domain weakly satisfies the radical formula and state some necessary conditions on local integral domains which are semi-compatible or satisfy the radical formula and also on Noetherian rings which weakly satisfy the radical formula.

Keywords

References

  1. A. Azizi, On prime and weakly prime submodules, Vietnam J. Math. 36 (2008), no. 3, 315-325.
  2. A. Azizi, Radical formula and prime submodules, J. Algebra 307 (2007), no. 1, 454-460. https://doi.org/10.1016/j.jalgebra.2006.07.006
  3. A. Azizi, Radical formula and weakly prime submodules, Glasg. Math. J. 51 (2009), no. 2, 405-412. https://doi.org/10.1017/S0017089509005072
  4. A. Azizi and A. Nikseresht, Simplified radical formula in modules, Houston J. Math. 38 (2012), no. 2, 333-344.
  5. M. Behboodi, On weakly prime radical of modules and semi-compatible modules, Acta Math. Hungar. 113 (2006), no. 3, 243-254. https://doi.org/10.1007/s10474-006-0097-6
  6. M. Behboodi and H. Koohi, Weakly prime modules, Vietnam J. Math. 32 (2004), no. 2, 185-195.
  7. K. H. Leung and S. H. Man, On commutative Noetherian rings which satisfy the radical formula, Glasgow Math. J. 39 (1997), no. 3, 285-293. https://doi.org/10.1017/S0017089500032225
  8. S. H. Man, On commutative Noetherian rings which satisfy the generalized radical for- mula, Comm. Algebra 27 (1999), no. 8, 4075-4088. https://doi.org/10.1080/00927879908826683
  9. R. McCasland and M. Moore, On radicals of submodules of finitely generated modules, Canad. Math. Bull. 29 (1986), no. 1, 37-39. https://doi.org/10.4153/CMB-1986-006-7
  10. A. Nikseresht and A. Azizi, On arithmetical rings and the radical formula, Vietnam J. Math. 38 (2010), no. 1, 55-62.
  11. H. Sharif, Y. Sharifi, and S. Namazi, Rings satisfying the radical formula, Acta Math. Hungar. 71 (1996), no. 1-2, 103-108. https://doi.org/10.1007/BF00052198
  12. P. F. Smith, Primary modules over commutative rings, Glasg. Math. J. 43 (2001), no. 1, 103-111.