DOI QR코드

DOI QR Code

A Study of Mechanical Interfacial Properties of Carbon Nanotube on Carbon Fiber/Epoxy Resin Composites

탄소나노튜브로 표면처리 된 탄소섬유/에폭시 수지 복합재료의 기계적 특성 연구

  • Hong, Eunmi (Surface Technology Dicision, Korea Institute of Materials Science) ;
  • Lee, Kyuhwan (Surface Technology Dicision, Korea Institute of Materials Science) ;
  • Kim, Yangdo (Department of Materials Science and Engineering, Pusan National Unibersity) ;
  • Lim, Dongchan (Surface Technology Dicision, Korea Institute of Materials Science)
  • 홍은미 (한국기계연구원 부설 재료연구소) ;
  • 이규환 (한국기계연구원 부설 재료연구소) ;
  • 김양도 (부산대학교 재료공학과) ;
  • 임동찬 (한국기계연구원 부설 재료연구소)
  • Received : 2013.10.07
  • Accepted : 2013.10.23
  • Published : 2013.10.30

Abstract

In this work, the grow of carbon nanotube (CNT) on carbon fiber was introduced on PAN-based carbon fibers for the enhancement of mechanical interfacial strength of carbon fibers-reinforced composites. The surface properties of carbon fibers were determined by scanning electron microscopy (SEM) and mechanical interfacial properties of the composites were studied by interlaminar shear strength (ILSS). From the results, it was found that the mechanical interfacial properties of CNT-carbon fibers-reinforced composites (CNT-CFRPs) enhanced with decreasing the CNT content. The excessive CNT content can lead the failure due to the interfacial separation between fibers and matrices in this system. In conclusion, the optimum CNT content on carbon fiber surfaces can be a key factor to determine the mechanical interfacial properties of the CNT-CFRPs.

Keywords

References

  1. M. A. Montes-moran, R. J. Young, Carbon, 40 (2002) 857. https://doi.org/10.1016/S0008-6223(01)00207-X
  2. F. An, C. Lu, J. Guo, S. He, H. Lu, Y. Yang, Surf. Sci., 258 (2011) 1069. https://doi.org/10.1016/j.apsusc.2011.09.003
  3. D. C. Davis, J. W. Wikerson, J. Zhu, D. O. O. Ayewah, Compos. Struct., 92 (2010) 2653. https://doi.org/10.1016/j.compstruct.2010.03.019
  4. D. R. Bortz, C. Merino, I. Martin-Gullon, Comp. Part A : Appl. Sci. Manuf., 42 (2011) 1584. https://doi.org/10.1016/j.compositesa.2011.07.002
  5. X. Jincheng, Y. Hui, X. Long, L. Xiaolong, Y. Hua, Mater. Des., 25 (2004) 489. https://doi.org/10.1016/j.matdes.2004.01.011
  6. J. Rams, A. Urena, M. D. Escalera, M. Sanchez, Comp. Part A: Appl., 38 (2007) 566. https://doi.org/10.1016/j.compositesa.2006.02.010
  7. E. Hage, S. F. Costa, L. A. Pessan, J. Adhesion Sci. Technol., 11 (1997) 1491. https://doi.org/10.1163/156856197X00390
  8. S. B. Lee, O. Choi, W. Lee, J. W. Yi, B. S. Kim, J. H. Byun, M. K. Yoon, H. Fong, E. T. Thostenson, T. W. Chou, Composites: Part A, 42 (2011) 337. https://doi.org/10.1016/j.compositesa.2010.10.016
  9. A. Godara, L. Gorbatikh, G. Kalinka, A. Warrier, O. Rochez, L. Mezzo, F. Luizi, A. W. Vuure, S. V. Lomov, I. Verpoest, Compos. Sci. Technol., 70 (2010) 1346. https://doi.org/10.1016/j.compscitech.2010.04.010
  10. S. S. Wicks, R. G. Villoria, B. L. Wardle, Compos. Sci. Technol., 70 (2010) 20. https://doi.org/10.1016/j.compscitech.2009.09.001
  11. N. Yamamoto, A. John Hart, E. J. Garcia, S. S. Wicks, H. M. Duong, A. H. Slocum, B. L. Wardle, Carbon, 47 (2009) 551. https://doi.org/10.1016/j.carbon.2008.10.030
  12. H. Qian, E. Greenhalgh, M. Shaffer, A. Bismarck, J. Mater. Chem., 20 (2010) 4751. https://doi.org/10.1039/c000041h
  13. ASTM (American Society for Testing and Materials) ASTM D2344/D2344M-00, Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates (2006).