참고문헌
- Aksencer, T. and Aydogdu, M. (2012), "Forced transverse vibration of nanoplates using nonlocal elasticity", Phys. E, 44, 1752-1759. https://doi.org/10.1016/j.physe.2011.12.004
- Avsec, J. and Oblak, M. (2007), "Thermal vibrational analysis for simply supported beam and clamped beam", J. Sound Vib., 308, 514-525. https://doi.org/10.1016/j.jsv.2007.04.002
- Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10, 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54, 4703-4710. https://doi.org/10.1063/1.332803
- Eringen, A.C., Speziale, C.G. and Kim, B.S. (1977), "Crack tip problem in non-local elasticity", J. Mech. Phys. Solids, 25, 339-355. https://doi.org/10.1016/0022-5096(77)90002-3
- Hatami, S., Azhari, M. and Saadatpour, M.M. (2007), "Free vibration of moving laminated composite plates", Compos. Struct., 80, 609-620. https://doi.org/10.1016/j.compstruct.2006.07.009
- Lee, H.L. and Chang, W.J. (2009), "Vibration analysis of a viscous-fluid-conveying single-walled carbon nanotube embedded in an elastic medium", Phys. E, 41, 529-532. https://doi.org/10.1016/j.physe.2008.10.002
- Li, C., Lim, C.W. and Yu, J.L. (2011a), "Dynamics and stability of transverse vibrations of nonlocal nanobeams with a variable axial load", Smart Mater. Struct., 20, 015023. https://doi.org/10.1088/0964-1726/20/1/015023
- Li, C., Lim, C.W., Yu, J.L. and Zeng, Q.C. (2011b), "Analytical solutions for vibration of simply supported nonlocal nanobeams with an axial force", Int. J. Struct. Stab. Dyn., 11, 257-271. https://doi.org/10.1142/S0219455411004087
- Li, C., Lim, C.W., Yu, J.L. and Zeng, Q.C. (2011c), "Transverse vibration of pre-tensioned nonlocal nanobeams with precise internal axial loads", Sci. Chin. Tech. Sci., 54, 2007-2013. https://doi.org/10.1007/s11431-011-4479-9
- Li, C., Zheng, Z.J., Yu, J.L. and Lim, C.W. (2011d), "Static analysis of ultra-thin beams based on a semicontinuum moder", Acta Mech. Sin., 27, 713-719. https://doi.org/10.1007/s10409-011-0453-9
- Lim, C.W. (2010), "On the truth of nanoscale for nanobeams based on nonlocal elastic stress field theory: equilibrium, governing equation and static deflection", Appl. Math. Mech., 31, 37-54. https://doi.org/10.1007/s10483-010-0105-7
- Lim, C.W., Li. C. and Yu, J.L. (2009), "The effects of stiffness strengthening nonlocal stress and axial tension on free vibration of cantilever nanobeams", Interaction Multiscale Mech., 2, 223-233. https://doi.org/10.12989/imm.2009.2.3.223
- Lim, C.W., Li. C. and Yu, J.L. (2012), "Free torsional vibration of nanotubes based on nonlocal stress theory", J. Sound Vib., 331, 2798-2808. https://doi.org/10.1016/j.jsv.2012.01.016
- Lim, C.W., Niu, J.C. and Yu, Y.M. (2010), "Nonlocal stress theory for buckling instability of nanotubes: new predictions on stiffness strengthening effects of nanoscales", J. Comput. Theore. Nanosci., 7, 2104-2111. https://doi.org/10.1166/jctn.2010.1591
- Lim, C.W. and Yang, Q. (2011), "Nonlocal thermal-elasticity for nanobeam deformation: exact solutions with stiffness enhancement effects", J. Appl. Phys., 110, 013514. https://doi.org/10.1063/1.3596568
- Lu, P., Lee, H.P., Lu, C. and Zhang, P.Q. (2006), "Dynamic properties of flexural beams using a nonlocal elasticity model", J. Appl. Phys., 99, 073510. https://doi.org/10.1063/1.2189213
- Mindlin, R.D. (1965), "Second gradient of strain and surface tension in linear elasticity", Int. J. Solids Struct., 1, 417-438. https://doi.org/10.1016/0020-7683(65)90006-5
- Oz, H.R. and Pakdemirli, M. (1999), "Vibrations of an axially moving beam with time-dependent velocity", J. Sound Vib., 227, 239-257. https://doi.org/10.1006/jsvi.1999.2247
- Pakdemirli, M. and Oz. H.R. (2008), "Infinite mode analysis and truncation to resonant modes of axially accelerating beam vibrations", J. Sound Vib., 311, 1052-1074. https://doi.org/10.1016/j.jsv.2007.10.003
- Peddieson, J., Buchanan, G.G. and McNitt, R.P. (2003), "Application of nonlocal continuum models to nanotechnology", Int. J. Eng. Sci., 41, 305-312. https://doi.org/10.1016/S0020-7225(02)00210-0
- Pradhan, S.C. and Kumar, A. (2011), "Vibration analysis of orthotropic graphene sheets using nonlocal elasticity theory and differential quadrature method", Compos. Stroct., 93, 774-779. https://doi.org/10.1016/j.compstruct.2010.08.004
- Tang, Y.Q., Chen, L.Q. and Yang, X.D. (2009), "Nonlinear vibrations of axially moving Timoshenko beams under weak and strong external excitations", J. Sound Vib., 320, 1078-1099. https://doi.org/10.1016/j.jsv.2008.08.024
- Wang, L. (2011), "A modified nonlocal beam model for vibration and stability of nanotubes conveying fluid", Phys. E, 44, 25-28. https://doi.org/10.1016/j.physe.2011.06.031
- Wang, Q., Zhou, G.Y. and Lin, K.C. (2006), "Scale effect on wave propagation of double-walled carbon nanotubes", Int. J. Solids Struct, 43, 6071-6084. https://doi.org/10.1016/j.ijsolstr.2005.11.005
- Yao, X.H. and Han, Q. (2007), "Investigation of axially compressed buckling of a multi-walled carbon nanotube under temperature field", Compos. Sci. Tech., 67, 125-134. https://doi.org/10.1016/j.compscitech.2006.03.021
- Yu, Y.M. and Lim, C.W. (2013), "Nonlinear constitutive model for axisymmetric bending of annular graphene-like nanoplate with gradient elasticity enhancement effects", J. Eng. Mech.-ASCE, 139, 1025-1035. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000625
- Zhang, Y.Q., Liu, G.R. and Wang, J.S. (2004), "Small-scale effects on buckling of multiwalled carbon nanotubes under axial compression", Phys. Rev. B, 70, 205430. https://doi.org/10.1103/PhysRevB.70.205430
피인용 문헌
- Transverse free vibration and stability of axially moving nanoplates based on nonlocal elasticity theory vol.45, 2017, https://doi.org/10.1016/j.apm.2016.12.006
- Combined strain gradient and concrete strength effects on flexural strength and ductility design of RC columns vol.15, pp.4, 2015, https://doi.org/10.12989/cac.2015.15.4.607
- Thermal and tensile loading effects on size-dependent vibration response of traveling nanobeam by wavelet-based spectral element modeling vol.52, pp.9, 2017, https://doi.org/10.1007/s11012-016-0578-9
- Nonlinear static and vibration analysis of Euler-Bernoulli composite beam model reinforced by FG-SWCNT with initial geometrical imperfection using FEM vol.59, pp.3, 2016, https://doi.org/10.12989/sem.2016.59.3.431
- Dynamical responses and stabilities of axially moving nanoscale beams with time-dependent velocity using a nonlocal stress gradient theory vol.23, pp.20, 2017, https://doi.org/10.1177/1077546316629013
- A unified formulation for static behavior of nonlocal curved beams vol.59, pp.3, 2016, https://doi.org/10.12989/sem.2016.59.3.475
- Prediction of mechanical properties of microstructures through a nonlocal stress field theory vol.229, pp.2, 2015, https://doi.org/10.1177/1740349913519437
- A Nonlinear Approach for Dynamic Responses of a Nano-Beam Based on a Strain Gradient Nonlocal Theory vol.609-610, pp.1662-9795, 2014, https://doi.org/10.4028/www.scientific.net/KEM.609-610.1483
- Vibration of deploying rectangular cross-sectional beam made of functionally graded materials pp.2048-4046, 2018, https://doi.org/10.1177/1461348418765957
- Analytical and numerical investigations of the ultrasonic microprobe considering size effects pp.1537-6532, 2020, https://doi.org/10.1080/15376494.2018.1539890
- Dynamics of silicon nanobeams with axial motion subjected to transverse and longitudinal loads considering nonlocal and surface effects vol.19, pp.1, 2017, https://doi.org/10.12989/sss.2017.19.1.105
- Strain gradient theory for vibration analysis of embedded CNT-reinforced micro Mindlin cylindrical shells considering agglomeration effects vol.62, pp.5, 2013, https://doi.org/10.12989/sem.2017.62.5.551
- Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams vol.25, pp.4, 2013, https://doi.org/10.12989/scs.2017.25.4.415
- Nonlocal elasticity approach for free longitudinal vibration of circular truncated nanocones and method of determining the range of nonlocal small scale vol.21, pp.3, 2013, https://doi.org/10.12989/sss.2018.21.3.279
- Flutter and Divergence Instability of Axially-Moving Nanoplates Resting on a Viscoelastic Foundation vol.9, pp.6, 2013, https://doi.org/10.3390/app9061097