참고문헌
- Amara, K., Tounsi, A., Mechab, I. and Adda Bedia, E.A. (2010), "Nonlocal elasticity effect on column buckling of multiwalled carbon nanotubes under temperature field", Applied Mathematical Modelling, 34, 3933-3942. https://doi.org/10.1016/j.apm.2010.03.029
- Arash, B. and Ansari, R. (2010), "Evaluation of nonlocal parameter in the vibrations of single-walled carbon nanotubes with initial strain", Physica E, 42, 2058-2064. https://doi.org/10.1016/j.physe.2010.03.028
- Arash, B. and Wang, Q. (2012), "A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes", Computational Materials Science, 51, 303-313. https://doi.org/10.1016/j.commatsci.2011.07.040
- Baghdadi, H., Tounsi, A., Zidour, M. and Benzair, A. (2013), "Thermal effect on vibration characteristics of armchair and zigzag single walled carbon nanotubes using nonlocal parabolic beam theory", Fullerenes, Nanotubes and Carbon Nanostructures. (In press)
- Bazant, Z.P. and Jirasek, M. (2002), "Nonlocal integral formulations of plasticity and damage: Survey of progress", Journal of Engineering Mechanics, 128(11), 1119-1149. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:11(1119)
- Benguediab, S., Tounsi, A., Zidour, M. and Semmah, A. (2013), "Chirality and scale effects on mechanical buckling properties of zigzag double-walled carbon nanotubes", Composites Part B: Engineering. (In press).
- Besseghier, A., Tounsi, A., Houari, M.S.A., Benzair, A., Boumia, L. and Heireche, H. (2011), "Thermal effect on wave propagation in double-walled carbon nanotubes embedded in a polymer matrix using nonlocal elasticity", Physica E, 43, 1379-1386. https://doi.org/10.1016/j.physe.2011.03.008
- Ekinci, K.L. and Roukes, M.L. (2005), "Nanoelectromechanical systems", Rev. Sci. Instrum., 76, 061101. https://doi.org/10.1063/1.1927327
- Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", International Journal of Engineering Science, 10, 233-248. https://doi.org/10.1016/0020-7225(72)90039-0
- Eringen, A.C. (1972), "Nonlocal polar elastic continua", International Journal of Engineering Science, 10, 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", Journal of Applied Physics, 54(9), 4703-4710. https://doi.org/10.1063/1.332803
- Gafour, Y., Zidour, M., Tounsi, A., Heireche, H. and Semmah, A. (2013), "Sound wave propagation in zigzag double-walled carbon nanotubes embedded in an elastic medium using nonlocal elasticity theory", Physica E, 48, 118-123. https://doi.org/10.1016/j.physe.2012.11.006
- Heireche, H., Tounsi, A., Benzair, A., Maachou, M. and Adda Bedia, E.A. (2008a), "Sound wave propagation in single-walled carbon nanotubes using nonlocal elasticity", Physica E, 40, 2791-2799. https://doi.org/10.1016/j.physe.2007.12.021
- Heireche, H., Tounsi, A., Benzair, A. and Mechab, I. (2008b), "Sound wave propagation in single-walled carbon nanotubes with initial axial stress", J. Appl. Phys., 104, 014301. https://doi.org/10.1063/1.2949274
- Heireche, H., Tounsi, A. and Benzair, A. (2008c), "Scale effect on wave propagation of double-walled carbon nanotubes with initial axial loading", Nanotechnology, 19, 185703. https://doi.org/10.1088/0957-4484/19/18/185703
- Hernandez, E., Goze, C., Bernier, P. and Rubio, A. (1998), "Elastic properties of C and BxCyNz composite nanotubes", Phys. Rev. Lett., 80, 4502-4505. https://doi.org/10.1103/PhysRevLett.80.4502
- Iijima, S., Brabec, C., Maiti, A. and Bernholc, J. (1996), "Structural flexibility of carbon nanotubes", J. Chem. Phys., 104(5), 2089-2092. https://doi.org/10.1063/1.470966
- Lavrik, N.V., Sepaniak, M.J. and Datskos, P.G. (2004), "Cantilever transducers as a platform for chemical and biological sensors", Rev. Sci. Instrum., 75, 2229. https://doi.org/10.1063/1.1763252
- Ma, H.M., Gao, X.L. and Reddy, J.N. (2008), "A microstructure-dependent Timoshenko beam model based on a modified couple stress theory", Journal of the Mechanics and Physics of Solids, 56, 3379-3391. https://doi.org/10.1016/j.jmps.2008.09.007
- Maachou, M., Zidour, M., Baghdadi, H., Ziane, N. and Tounsi, A., (2011), "A nonlocal Levinson beam model for free vibration analysis of zigzag single-walled carbon nanotubes including thermal effects", Solid State Communications, 151, 1467-1471. https://doi.org/10.1016/j.ssc.2011.06.038
- Naceri, M., Zidour, M., Semmah, A., Houari, M.S.A., Benzair, A. and Tounsi, A. (2011), "Sound wave propagation in armchair single walled carbon nanotubes under thermal environment", J. Appl. Phys., 110, 124322. https://doi.org/10.1063/1.3671636
- Nix, W.D. and Gao, H. (1998), "Indentation size effects in crystalline materials: A law for strain gradient plasticity", Journal of the Mechanics and Physics of Solids, 46, 411-425. https://doi.org/10.1016/S0022-5096(97)00086-0
- Peddieson, J., Buchanan, G.R. and McNitt, R.P. (2003), "Application of nonlocal continuum models to nanotechnology", International Journal of Engineering Science, 41(3-5), 305-312. https://doi.org/10.1016/S0020-7225(02)00210-0
- Phadikar, J.K. and Pradhan, S.C. (2010), "Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates", Computational Materials Science, 49(3), 492-499. https://doi.org/10.1016/j.commatsci.2010.05.040
- Pisano, A.A. and Fuschi, P. (2003), "Closed form solution for a nonlocal elastic bar in tension", International Journal of Solids and Structures, 40(1), 13-23. https://doi.org/10.1016/S0020-7683(02)00547-4
- Qian, D., Wagner, J.G., Liu, W.K., Yu, M.F. and Ruoff, R.S. (2002), "Mechanics of carbon nanotubes", Appl. Mech. Rev., 55, 495-533. https://doi.org/10.1115/1.1490129
- Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", International Journal of Engineering Science, 45(2-8), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004
- Reddy, J.N. (2010), "Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates", International Journal of Engineering Science, 48(11), 1507-1518. https://doi.org/10.1016/j.ijengsci.2010.09.020
- Sanchez-Portal, D., Artacho, E., Soler, J.M., Rubio, A. and Ordejo, P. (1999), "Ab initio structural, elastic, and vibrational properties of carbon nanotubes", Phys. Rev. B., 59, 12678 -12688. https://doi.org/10.1103/PhysRevB.59.12678
- Silvestre, N., Wang, C.M., Zhang, Y.Y. and Xiang, Y. (2011), "Sanders shell model for buckling of single-walled carbon nanotubes with small aspect ratio", Composite Structures, 93, 1683-1691. https://doi.org/10.1016/j.compstruct.2011.01.004
- Semmah, A., Tounsi, A., Zidour, M., Heireche, H. and Naceri, M. (2013), "Effect of chirality on critical buckling temperature of a zigzag single-walled carbon nanotubes using nonlocal continuum theory" Fullerenes, Nanotubes and Carbon Nanostructures. (In press)
- Sudak, L.J. (2003), "Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics", Journal of Applied Physics, 94(11), 7281-7287. https://doi.org/10.1063/1.1625437
- Tounsi, A., Heireche, H., Berrabah, H.M. and Mechab, I. (2008), "Scale effect on wave propagation of double-walled carbon nanotubes with initial axial loading", J. Appl. Phys., 104, 104301. https://doi.org/10.1063/1.3018330
- Tounsi, A., Heireche, H., Berrabah, H.M. and Mechab, I. (2009a), "Comment on 'Vibration analysis of fluid-conveying double-walled carbon nanotubes based on nonlocal elastic theory'", J. Phys.-Condens. Matter., 21, 448001. https://doi.org/10.1088/0953-8984/21/44/448001
- Tounsi, A., Heireche, H. and Adda Bedia, E.A. (2009b), "Comment on "Free transverse vibration of the fluid-conveying single-walled carbon nanotube using nonlocal elastic theory", J. Appl. Phys., 105, 126105. https://doi.org/10.1063/1.3153960
- Tounsi, A., Benguediab, S., Adda Bedia, E.A., Semmah, A. and Zidour, M. (2013), "Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes", Advances in Nano Research, 1(1), 1-11. https://doi.org/10.12989/anr.2013.1.1.001
- Wang, C.M., Kitipornchai, S., Lim, C.W. and Eisenberger, M. (2008), "Beam bending solutions based on nonlocal Timoshenko beam theory", Journal of Engineering Mechanics, 134(6), 475-481. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:6(475)
- Wang, Q. (2005), "Wave propagation in carbon nanotubes via nonlocal continuum mechanics", Journal of Applied Physics, 98, 124301. https://doi.org/10.1063/1.2141648
- Wang, Q. and Wang, C.M. (2007), "On constitutive relation and small scale parameter of nonlocal continuum mechanics for modeling carbon nanotubes", Nanotechnology, 18, 075702. https://doi.org/10.1088/0957-4484/18/7/075702
- Xu, M. (2006), "Free transverse vibrations of nano-to-micron scale beams", Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 462, 2977-2995. https://doi.org/10.1098/rspa.2006.1712
- Yakobson, B.I., Campbell, M.P., Brabec, C.J. and Bernholc, J. (1997), "High strain rate fracture and C-chain unraveling in carbon nanotubes", Comput. Mater. Sci., 8, 341-348. https://doi.org/10.1016/S0927-0256(97)00047-5
- Zhang, Y.Y., Wang, C.M. and Challamel, N. (2010), "Bending, buckling, and vibration of micro/nanobeams by hybrid nonlocal beam model", Journal of Engineering Mechanics, 136(5), 562-574. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000107
- Zidour, M., Benrahou, K.H., Semmah, A., Naceri, M., Belhadj, H.A., Bakhti, K. and Tounsi, A. (2012), "The thermal effect on vibration of zigzag single walled carbon nanotubes using nonlocal Timoshenko beam theory", Computational Materials Science, 51, 252-260. https://doi.org/10.1016/j.commatsci.2011.07.021
피인용 문헌
- Thermal vibration of a single-walled carbon nanotube predicted by semiquantum molecular dynamics vol.17, pp.7, 2015, https://doi.org/10.1039/C4CP05495D
- Vibration analysis of orthotropic circular and elliptical nano-plates embedded in elastic medium based on nonlocal Mindlin plate theory and using Galerkin method vol.30, pp.6, 2016, https://doi.org/10.1007/s12206-016-0506-x
- A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams vol.40, pp.5-6, 2016, https://doi.org/10.1016/j.apm.2015.11.026
- Effect of the rotation on a non-homogeneous infinite cylinder of orthotropic material with external magnetic field vol.54, pp.1, 2015, https://doi.org/10.12989/sem.2015.54.1.135
- Transverse vibration analysis of single-layered graphene sheet under magneto-thermal environment based on nonlocal plate theory vol.116, pp.16, 2014, https://doi.org/10.1063/1.4898759
- Effect of shear deformation on adhesive stresses in plated concrete beams: Analytical solutions vol.15, pp.3, 2015, https://doi.org/10.12989/cac.2015.15.3.337
- A simple shear deformation theory based on neutral surface position for functionally graded plates resting on Pasternak elastic foundations vol.53, pp.6, 2015, https://doi.org/10.12989/sem.2015.53.6.1215
- A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation vol.20, pp.2, 2016, https://doi.org/10.12989/scs.2016.20.2.227
- Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept vol.20, pp.5, 2016, https://doi.org/10.12989/scs.2016.20.5.963
- Free vibration of functionally graded thin elliptic plates with various edge supports vol.53, pp.2, 2015, https://doi.org/10.12989/sem.2015.53.2.337
- Analytical solution for bending analysis of functionally graded beam vol.19, pp.4, 2015, https://doi.org/10.12989/scs.2015.19.4.829
- Frequency analysis of porous nano-mechanical mass sensors made of multi-phase nanocrystalline silicon materials vol.4, pp.7, 2017, https://doi.org/10.1088/2053-1591/aa7ac2
- Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect vol.18, pp.2, 2015, https://doi.org/10.12989/scs.2015.18.2.425
- Thermo-mechanical vibration of rotating axially functionally graded nonlocal Timoshenko beam vol.123, pp.1, 2017, https://doi.org/10.1007/s00339-016-0712-5
- A review of continuum mechanics models for size-dependent analysis of beams and plates vol.177, 2017, https://doi.org/10.1016/j.compstruct.2017.06.040
- Nonlocal integral elasticity analysis of beam bending by using finite element method vol.54, pp.4, 2015, https://doi.org/10.12989/sem.2015.54.4.755
- Effect of various thermal loadings on buckling and vibrational characteristics of nonlocal temperature-dependent functionally graded nanobeams vol.23, pp.12, 2016, https://doi.org/10.1080/15376494.2015.1091524
- Dynamic modeling of preloaded size-dependent nano-crystalline nano-structures vol.38, pp.12, 2017, https://doi.org/10.1007/s10483-017-2291-8
- Damping Vibration Behavior of Viscoelastic Porous Nanocrystalline Nanobeams Incorporating Nonlocal–Couple Stress and Surface Energy Effects 2017, https://doi.org/10.1007/s40997-017-0127-8
- Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories vol.53, pp.6, 2015, https://doi.org/10.12989/sem.2015.53.6.1143
- Size-dependent vibration analysis of viscoelastic nanocrystalline silicon nanobeams with porosities based on a higher order refined beam theory vol.166, 2017, https://doi.org/10.1016/j.compstruct.2017.01.036
- A new nonlocal hyperbolic shear deformation theory for nanobeams embedded in an elastic medium vol.55, pp.4, 2015, https://doi.org/10.12989/sem.2015.55.4.743
- A unified formulation for static behavior of nonlocal curved beams vol.59, pp.3, 2016, https://doi.org/10.12989/sem.2016.59.3.475
- A new higher-order shear and normal deformation theory for functionally graded sandwich beams vol.19, pp.3, 2015, https://doi.org/10.12989/scs.2015.19.3.521
- Dynamic stability analysis of multi-walled carbon nanotubes with arbitrary boundary conditions based on the nonlocal elasticity theory vol.24, pp.14, 2017, https://doi.org/10.1080/15376494.2016.1227489
- A new higher order shear deformation model for functionally graded beams vol.20, pp.5, 2016, https://doi.org/10.1007/s12205-015-0252-0
- Static bending and free vibration of FGM beam using an exponential shear deformation theory vol.4, pp.1, 2015, https://doi.org/10.12989/csm.2015.4.1.099
- A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory vol.54, pp.4, 2015, https://doi.org/10.12989/sem.2015.54.4.693
- On the Thermal Buckling Characteristics of Armchair Single-Walled Carbon Nanotube Embedded in an Elastic Medium Based on Nonlocal Continuum Elasticity vol.45, pp.2, 2015, https://doi.org/10.1007/s13538-015-0306-2
- On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams vol.19, pp.5, 2015, https://doi.org/10.12989/scs.2015.19.5.1259
- A nonlocal quasi-3D trigonometric plate model for free vibration behaviour of micro/nanoscale plates vol.56, pp.2, 2015, https://doi.org/10.12989/sem.2015.56.2.223
- A new simple shear and normal deformations theory for functionally graded beams vol.18, pp.2, 2015, https://doi.org/10.12989/scs.2015.18.2.409
- A new higher order shear and normal deformation theory for functionally graded beams vol.18, pp.3, 2015, https://doi.org/10.12989/scs.2015.18.3.793
- On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model vol.18, pp.4, 2015, https://doi.org/10.12989/scs.2015.18.4.1063
- On the bending and stability of nanowire using various HSDTs vol.3, pp.4, 2015, https://doi.org/10.12989/anr.2015.3.4.177
- Nonlinear Free Vibration of Functionally Graded Nanobeams on Nonlinear Elastic Foundation vol.40, pp.1, 2016, https://doi.org/10.1007/s40996-016-0012-5
- A nonlocal beam model for out-of-plane static analysis of circular nanobeams vol.76, 2016, https://doi.org/10.1016/j.mechrescom.2016.06.002
- Effects of rotary inertia shear deformation and non-homogeneity on frequencies of beam vol.55, pp.4, 2015, https://doi.org/10.12989/sem.2015.55.4.871
- A new refined nonlocal beam theory accounting for effect of thickness stretching in nanoscale beams vol.4, pp.4, 2016, https://doi.org/10.12989/anr.2016.4.4.251
- A general higher-order nonlocal couple stress based beam model for vibration analysis of porous nanocrystalline nanobeams vol.112, 2017, https://doi.org/10.1016/j.spmi.2017.09.010
- A computational shear displacement model for vibrational analysis of functionally graded beams with porosities vol.19, pp.2, 2015, https://doi.org/10.12989/scs.2015.19.2.369
- Nonlinear thermal buckling of axially functionally graded micro and nanobeams vol.168, 2017, https://doi.org/10.1016/j.compstruct.2017.02.048
- Dynamic modeling and vibration analysis of double-layered multi-phase porous nanocrystalline silicon nanoplate systems vol.66, 2017, https://doi.org/10.1016/j.euromechsol.2017.07.010
- CO adsorption on TiO2nanomaterials: nanoparticles, nanotubes and nano-surfaces vol.19, pp.sup10, 2015, https://doi.org/10.1179/1432891715Z.0000000002129
- Free vibration analysis of chiral double-walled carbon nanotube using non-local elasticity theory vol.4, pp.1, 2016, https://doi.org/10.12989/anr.2016.4.1.031
- Thermomechanical effects on the bending of antisymmetric cross-ply composite plates using a four variable sinusoidal theory vol.19, pp.1, 2015, https://doi.org/10.12989/scs.2015.19.1.093
- Propagation of waves in nonlocal porous multi-phase nanocrystalline nanobeams under longitudinal magnetic field pp.1745-5049, 2018, https://doi.org/10.1080/17455030.2018.1506596
- Axial magnetic field effects on dynamic characteristics of embedded multiphase nanocrystalline nanobeams vol.24, pp.8, 2018, https://doi.org/10.1007/s00542-018-3771-z
- Temperature and porosity effects on wave propagation in nanobeams using bi-Helmholtz nonlocal strain-gradient elasticity vol.133, pp.5, 2018, https://doi.org/10.1140/epjp/i2018-11993-0
- A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams vol.19, pp.2, 2017, https://doi.org/10.12989/sss.2017.19.2.115
- Bending and stability analysis of size-dependent compositionally graded Timoshenko nanobeams with porosities vol.6, pp.1, 2017, https://doi.org/10.12989/amr.2017.6.1.045
- A refined nonlocal hyperbolic shear deformation beam model for bending and dynamic analysis of nanoscale beams vol.5, pp.2, 2013, https://doi.org/10.12989/anr.2017.5.2.113
- A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams vol.62, pp.6, 2017, https://doi.org/10.12989/sem.2017.62.6.695
- Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory vol.19, pp.6, 2013, https://doi.org/10.12989/sss.2017.19.6.601
- Surface effects on vibration and buckling behavior of embedded nanoarches vol.64, pp.1, 2017, https://doi.org/10.12989/sem.2017.64.1.001
- Dynamic characteristics of curved inhomogeneous nonlocal porous beams in thermal environment vol.64, pp.1, 2013, https://doi.org/10.12989/sem.2017.64.1.121
- Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams vol.25, pp.4, 2013, https://doi.org/10.12989/scs.2017.25.4.415
- Vibration analysis of FG nanoplates with nanovoids on viscoelastic substrate under hygro-thermo-mechanical loading using nonlocal strain gradient theory vol.64, pp.6, 2013, https://doi.org/10.12989/sem.2017.64.6.683
- Wave dispersion characteristics of nonlocal strain gradient double-layered graphene sheets in hygro-thermal environments vol.65, pp.6, 2018, https://doi.org/10.12989/sem.2018.65.6.645
- Multi-dimensional wind vibration coefficients under suction for ultra-large cooling towers considering ventilation rates of louvers vol.66, pp.2, 2013, https://doi.org/10.12989/sem.2018.66.2.273
- A unified formulation for modeling of inhomogeneous nonlocal beams vol.66, pp.3, 2013, https://doi.org/10.12989/sem.2018.66.3.369
- A new nonlocal HSDT for analysis of stability of single layer graphene sheet vol.6, pp.2, 2013, https://doi.org/10.12989/anr.2018.6.2.147
- Buckling response with stretching effect of carbon nanotube-reinforced composite beams resting on elastic foundation vol.67, pp.2, 2018, https://doi.org/10.12989/sem.2018.67.2.125
- Bending of a cracked functionally graded nanobeam vol.6, pp.3, 2013, https://doi.org/10.12989/anr.2018.6.3.219
- Dynamic analysis of higher order shear-deformable nanobeams resting on elastic foundation based on nonlocal strain gradient theory vol.6, pp.3, 2018, https://doi.org/10.12989/anr.2018.6.3.279
- Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections vol.17, pp.2, 2019, https://doi.org/10.12989/gae.2019.17.2.175
- Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure vol.7, pp.3, 2019, https://doi.org/10.12989/anr.2019.7.3.181
- Analyzing large-amplitude vibration of nonlocal beams made of different piezo-electric materials in thermal environment vol.8, pp.3, 2019, https://doi.org/10.12989/amr.2019.8.3.237
- Flexoelectric effects on dynamic response characteristics of nonlocal piezoelectric material beam vol.8, pp.4, 2013, https://doi.org/10.12989/amr.2019.8.4.259
- Theoretical Analysis of Free Vibration of Microbeams under Different Boundary Conditions Using Stress-Driven Nonlocal Integral Model vol.20, pp.3, 2013, https://doi.org/10.1142/s0219455420500406
- Theoretical analysis on elastic buckling of nanobeams based on stress-driven nonlocal integral model vol.41, pp.2, 2013, https://doi.org/10.1007/s10483-020-2569-6
- Mechanical-hygro-thermal vibrations of functionally graded porous plates with nonlocal and strain gradient effects vol.7, pp.2, 2013, https://doi.org/10.12989/aas.2020.7.2.169
- A review of effects of partial dynamic loading on dynamic response of nonlocal functionally graded material beams vol.9, pp.1, 2013, https://doi.org/10.12989/amr.2020.9.1.033
- Nonlinear vibration of smart nonlocal magneto-electro-elastic beams resting on nonlinear elastic substrate with geometrical imperfection and various piezoelectric effects vol.25, pp.5, 2013, https://doi.org/10.12989/sss.2020.25.5.619
- Vibration analysis of nonlocal strain gradient porous FG composite plates coupled by visco-elastic foundation based on DQM vol.9, pp.3, 2020, https://doi.org/10.12989/csm.2020.9.3.201
- Dynamic response of size-dependent porous functionally graded beams under thermal and moving load using a numerical approach vol.7, pp.2, 2013, https://doi.org/10.12989/smm.2020.7.2.069
- On Nonlinear Bending Study of a Piezo-Flexomagnetic Nanobeam Based on an Analytical-Numerical Solution vol.10, pp.9, 2013, https://doi.org/10.3390/nano10091762
- On scale-dependent stability analysis of functionally graded magneto-electro-thermo-elastic cylindrical nanoshells vol.75, pp.6, 2013, https://doi.org/10.12989/sem.2020.75.6.659
- Porosity effects on post-buckling behavior of geometrically imperfect metal foam doubly-curved shells with stiffeners vol.75, pp.6, 2013, https://doi.org/10.12989/sem.2020.75.6.701
- Nonlocal nonlinear stability of higher-order porous beams via Chebyshev-Ritz method vol.76, pp.3, 2013, https://doi.org/10.12989/sem.2020.76.3.413
- Large amplitude free torsional vibration analysis of size-dependent circular nanobars using elliptic functions vol.77, pp.4, 2021, https://doi.org/10.12989/sem.2021.77.4.535
- Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory vol.10, pp.3, 2013, https://doi.org/10.12989/anr.2021.10.3.281
- Weighted Residual Approach for Bending Analysis of Nanobeam Using by Modified Couple Stress Theory vol.13, pp.2, 2013, https://doi.org/10.24107/ijeas.932580
- On static buckling of multilayered carbon nanotubes reinforced composite nanobeams supported on non-linear elastic foundations vol.40, pp.3, 2021, https://doi.org/10.12989/scs.2021.40.3.389
- Numerical forced vibration analysis of compositionally gradient porous cylindrical microshells under moving load and thermal environment vol.40, pp.6, 2021, https://doi.org/10.12989/scs.2021.40.6.893