DOI QR코드

DOI QR Code

Comparison of various refined nonlocal beam theories for bending, vibration and buckling analysis of nanobeams

  • Berrabah, H.M. (Laboratoire des Materiaux et Hydrologie, Universite de Sidi Bel Abbes, Faculte de Technologie, Departement de Genie Civil) ;
  • Tounsi, Abdelouahed (Laboratoire des Materiaux et Hydrologie, Universite de Sidi Bel Abbes, Faculte de Technologie, Departement de Genie Civil) ;
  • Semmah, Abdelwahed (Universite de Sidi Bel Abbes, Faculte des Sciences exactes, Departement de Physique) ;
  • Adda Bedia, E.A. (Laboratoire des Materiaux et Hydrologie, Universite de Sidi Bel Abbes, Faculte de Technologie, Departement de Genie Civil)
  • Received : 2012.11.18
  • Accepted : 2013.10.20
  • Published : 2013.11.10

Abstract

In this paper, unified nonlocal shear deformation theory is proposed to study bending, buckling and free vibration of nanobeams. This theory is based on the assumption that the in-plane and transverse displacements consist of bending and shear components in which the bending components do not contribute toward shear forces and, likewise, the shear components do not contribute toward bending moments. In addition, this present model is capable of capturing both small scale effect and transverse shear deformation effects of nanobeams, and does not require shear correction factors. The equations of motion are derived from Hamilton's principle. Analytical solutions for the deflection, buckling load, and natural frequency are presented for a simply supported nanobeam, and the obtained results are compared with those predicted by the nonlocal Timoshenko beam theory and Reddy beam theories.

Keywords

References

  1. Amara, K., Tounsi, A., Mechab, I. and Adda Bedia, E.A. (2010), "Nonlocal elasticity effect on column buckling of multiwalled carbon nanotubes under temperature field", Applied Mathematical Modelling, 34, 3933-3942. https://doi.org/10.1016/j.apm.2010.03.029
  2. Arash, B. and Ansari, R. (2010), "Evaluation of nonlocal parameter in the vibrations of single-walled carbon nanotubes with initial strain", Physica E, 42, 2058-2064. https://doi.org/10.1016/j.physe.2010.03.028
  3. Arash, B. and Wang, Q. (2012), "A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes", Computational Materials Science, 51, 303-313. https://doi.org/10.1016/j.commatsci.2011.07.040
  4. Baghdadi, H., Tounsi, A., Zidour, M. and Benzair, A. (2013), "Thermal effect on vibration characteristics of armchair and zigzag single walled carbon nanotubes using nonlocal parabolic beam theory", Fullerenes, Nanotubes and Carbon Nanostructures. (In press)
  5. Bazant, Z.P. and Jirasek, M. (2002), "Nonlocal integral formulations of plasticity and damage: Survey of progress", Journal of Engineering Mechanics, 128(11), 1119-1149. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:11(1119)
  6. Benguediab, S., Tounsi, A., Zidour, M. and Semmah, A. (2013), "Chirality and scale effects on mechanical buckling properties of zigzag double-walled carbon nanotubes", Composites Part B: Engineering. (In press).
  7. Besseghier, A., Tounsi, A., Houari, M.S.A., Benzair, A., Boumia, L. and Heireche, H. (2011), "Thermal effect on wave propagation in double-walled carbon nanotubes embedded in a polymer matrix using nonlocal elasticity", Physica E, 43, 1379-1386. https://doi.org/10.1016/j.physe.2011.03.008
  8. Ekinci, K.L. and Roukes, M.L. (2005), "Nanoelectromechanical systems", Rev. Sci. Instrum., 76, 061101. https://doi.org/10.1063/1.1927327
  9. Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", International Journal of Engineering Science, 10, 233-248. https://doi.org/10.1016/0020-7225(72)90039-0
  10. Eringen, A.C. (1972), "Nonlocal polar elastic continua", International Journal of Engineering Science, 10, 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
  11. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", Journal of Applied Physics, 54(9), 4703-4710. https://doi.org/10.1063/1.332803
  12. Gafour, Y., Zidour, M., Tounsi, A., Heireche, H. and Semmah, A. (2013), "Sound wave propagation in zigzag double-walled carbon nanotubes embedded in an elastic medium using nonlocal elasticity theory", Physica E, 48, 118-123. https://doi.org/10.1016/j.physe.2012.11.006
  13. Heireche, H., Tounsi, A., Benzair, A., Maachou, M. and Adda Bedia, E.A. (2008a), "Sound wave propagation in single-walled carbon nanotubes using nonlocal elasticity", Physica E, 40, 2791-2799. https://doi.org/10.1016/j.physe.2007.12.021
  14. Heireche, H., Tounsi, A., Benzair, A. and Mechab, I. (2008b), "Sound wave propagation in single-walled carbon nanotubes with initial axial stress", J. Appl. Phys., 104, 014301. https://doi.org/10.1063/1.2949274
  15. Heireche, H., Tounsi, A. and Benzair, A. (2008c), "Scale effect on wave propagation of double-walled carbon nanotubes with initial axial loading", Nanotechnology, 19, 185703. https://doi.org/10.1088/0957-4484/19/18/185703
  16. Hernandez, E., Goze, C., Bernier, P. and Rubio, A. (1998), "Elastic properties of C and BxCyNz composite nanotubes", Phys. Rev. Lett., 80, 4502-4505. https://doi.org/10.1103/PhysRevLett.80.4502
  17. Iijima, S., Brabec, C., Maiti, A. and Bernholc, J. (1996), "Structural flexibility of carbon nanotubes", J. Chem. Phys., 104(5), 2089-2092. https://doi.org/10.1063/1.470966
  18. Lavrik, N.V., Sepaniak, M.J. and Datskos, P.G. (2004), "Cantilever transducers as a platform for chemical and biological sensors", Rev. Sci. Instrum., 75, 2229. https://doi.org/10.1063/1.1763252
  19. Ma, H.M., Gao, X.L. and Reddy, J.N. (2008), "A microstructure-dependent Timoshenko beam model based on a modified couple stress theory", Journal of the Mechanics and Physics of Solids, 56, 3379-3391. https://doi.org/10.1016/j.jmps.2008.09.007
  20. Maachou, M., Zidour, M., Baghdadi, H., Ziane, N. and Tounsi, A., (2011), "A nonlocal Levinson beam model for free vibration analysis of zigzag single-walled carbon nanotubes including thermal effects", Solid State Communications, 151, 1467-1471. https://doi.org/10.1016/j.ssc.2011.06.038
  21. Naceri, M., Zidour, M., Semmah, A., Houari, M.S.A., Benzair, A. and Tounsi, A. (2011), "Sound wave propagation in armchair single walled carbon nanotubes under thermal environment", J. Appl. Phys., 110, 124322. https://doi.org/10.1063/1.3671636
  22. Nix, W.D. and Gao, H. (1998), "Indentation size effects in crystalline materials: A law for strain gradient plasticity", Journal of the Mechanics and Physics of Solids, 46, 411-425. https://doi.org/10.1016/S0022-5096(97)00086-0
  23. Peddieson, J., Buchanan, G.R. and McNitt, R.P. (2003), "Application of nonlocal continuum models to nanotechnology", International Journal of Engineering Science, 41(3-5), 305-312. https://doi.org/10.1016/S0020-7225(02)00210-0
  24. Phadikar, J.K. and Pradhan, S.C. (2010), "Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates", Computational Materials Science, 49(3), 492-499. https://doi.org/10.1016/j.commatsci.2010.05.040
  25. Pisano, A.A. and Fuschi, P. (2003), "Closed form solution for a nonlocal elastic bar in tension", International Journal of Solids and Structures, 40(1), 13-23. https://doi.org/10.1016/S0020-7683(02)00547-4
  26. Qian, D., Wagner, J.G., Liu, W.K., Yu, M.F. and Ruoff, R.S. (2002), "Mechanics of carbon nanotubes", Appl. Mech. Rev., 55, 495-533. https://doi.org/10.1115/1.1490129
  27. Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", International Journal of Engineering Science, 45(2-8), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004
  28. Reddy, J.N. (2010), "Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates", International Journal of Engineering Science, 48(11), 1507-1518. https://doi.org/10.1016/j.ijengsci.2010.09.020
  29. Sanchez-Portal, D., Artacho, E., Soler, J.M., Rubio, A. and Ordejo, P. (1999), "Ab initio structural, elastic, and vibrational properties of carbon nanotubes", Phys. Rev. B., 59, 12678 -12688. https://doi.org/10.1103/PhysRevB.59.12678
  30. Silvestre, N., Wang, C.M., Zhang, Y.Y. and Xiang, Y. (2011), "Sanders shell model for buckling of single-walled carbon nanotubes with small aspect ratio", Composite Structures, 93, 1683-1691. https://doi.org/10.1016/j.compstruct.2011.01.004
  31. Semmah, A., Tounsi, A., Zidour, M., Heireche, H. and Naceri, M. (2013), "Effect of chirality on critical buckling temperature of a zigzag single-walled carbon nanotubes using nonlocal continuum theory" Fullerenes, Nanotubes and Carbon Nanostructures. (In press)
  32. Sudak, L.J. (2003), "Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics", Journal of Applied Physics, 94(11), 7281-7287. https://doi.org/10.1063/1.1625437
  33. Tounsi, A., Heireche, H., Berrabah, H.M. and Mechab, I. (2008), "Scale effect on wave propagation of double-walled carbon nanotubes with initial axial loading", J. Appl. Phys., 104, 104301. https://doi.org/10.1063/1.3018330
  34. Tounsi, A., Heireche, H., Berrabah, H.M. and Mechab, I. (2009a), "Comment on 'Vibration analysis of fluid-conveying double-walled carbon nanotubes based on nonlocal elastic theory'", J. Phys.-Condens. Matter., 21, 448001. https://doi.org/10.1088/0953-8984/21/44/448001
  35. Tounsi, A., Heireche, H. and Adda Bedia, E.A. (2009b), "Comment on "Free transverse vibration of the fluid-conveying single-walled carbon nanotube using nonlocal elastic theory", J. Appl. Phys., 105, 126105. https://doi.org/10.1063/1.3153960
  36. Tounsi, A., Benguediab, S., Adda Bedia, E.A., Semmah, A. and Zidour, M. (2013), "Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes", Advances in Nano Research, 1(1), 1-11. https://doi.org/10.12989/anr.2013.1.1.001
  37. Wang, C.M., Kitipornchai, S., Lim, C.W. and Eisenberger, M. (2008), "Beam bending solutions based on nonlocal Timoshenko beam theory", Journal of Engineering Mechanics, 134(6), 475-481. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:6(475)
  38. Wang, Q. (2005), "Wave propagation in carbon nanotubes via nonlocal continuum mechanics", Journal of Applied Physics, 98, 124301. https://doi.org/10.1063/1.2141648
  39. Wang, Q. and Wang, C.M. (2007), "On constitutive relation and small scale parameter of nonlocal continuum mechanics for modeling carbon nanotubes", Nanotechnology, 18, 075702. https://doi.org/10.1088/0957-4484/18/7/075702
  40. Xu, M. (2006), "Free transverse vibrations of nano-to-micron scale beams", Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 462, 2977-2995. https://doi.org/10.1098/rspa.2006.1712
  41. Yakobson, B.I., Campbell, M.P., Brabec, C.J. and Bernholc, J. (1997), "High strain rate fracture and C-chain unraveling in carbon nanotubes", Comput. Mater. Sci., 8, 341-348. https://doi.org/10.1016/S0927-0256(97)00047-5
  42. Zhang, Y.Y., Wang, C.M. and Challamel, N. (2010), "Bending, buckling, and vibration of micro/nanobeams by hybrid nonlocal beam model", Journal of Engineering Mechanics, 136(5), 562-574. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000107
  43. Zidour, M., Benrahou, K.H., Semmah, A., Naceri, M., Belhadj, H.A., Bakhti, K. and Tounsi, A. (2012), "The thermal effect on vibration of zigzag single walled carbon nanotubes using nonlocal Timoshenko beam theory", Computational Materials Science, 51, 252-260. https://doi.org/10.1016/j.commatsci.2011.07.021

Cited by

  1. Thermal vibration of a single-walled carbon nanotube predicted by semiquantum molecular dynamics vol.17, pp.7, 2015, https://doi.org/10.1039/C4CP05495D
  2. Vibration analysis of orthotropic circular and elliptical nano-plates embedded in elastic medium based on nonlocal Mindlin plate theory and using Galerkin method vol.30, pp.6, 2016, https://doi.org/10.1007/s12206-016-0506-x
  3. A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams vol.40, pp.5-6, 2016, https://doi.org/10.1016/j.apm.2015.11.026
  4. Effect of the rotation on a non-homogeneous infinite cylinder of orthotropic material with external magnetic field vol.54, pp.1, 2015, https://doi.org/10.12989/sem.2015.54.1.135
  5. Transverse vibration analysis of single-layered graphene sheet under magneto-thermal environment based on nonlocal plate theory vol.116, pp.16, 2014, https://doi.org/10.1063/1.4898759
  6. Effect of shear deformation on adhesive stresses in plated concrete beams: Analytical solutions vol.15, pp.3, 2015, https://doi.org/10.12989/cac.2015.15.3.337
  7. A simple shear deformation theory based on neutral surface position for functionally graded plates resting on Pasternak elastic foundations vol.53, pp.6, 2015, https://doi.org/10.12989/sem.2015.53.6.1215
  8. A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation vol.20, pp.2, 2016, https://doi.org/10.12989/scs.2016.20.2.227
  9. Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept vol.20, pp.5, 2016, https://doi.org/10.12989/scs.2016.20.5.963
  10. Free vibration of functionally graded thin elliptic plates with various edge supports vol.53, pp.2, 2015, https://doi.org/10.12989/sem.2015.53.2.337
  11. Analytical solution for bending analysis of functionally graded beam vol.19, pp.4, 2015, https://doi.org/10.12989/scs.2015.19.4.829
  12. Frequency analysis of porous nano-mechanical mass sensors made of multi-phase nanocrystalline silicon materials vol.4, pp.7, 2017, https://doi.org/10.1088/2053-1591/aa7ac2
  13. Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect vol.18, pp.2, 2015, https://doi.org/10.12989/scs.2015.18.2.425
  14. Thermo-mechanical vibration of rotating axially functionally graded nonlocal Timoshenko beam vol.123, pp.1, 2017, https://doi.org/10.1007/s00339-016-0712-5
  15. A review of continuum mechanics models for size-dependent analysis of beams and plates vol.177, 2017, https://doi.org/10.1016/j.compstruct.2017.06.040
  16. Nonlocal integral elasticity analysis of beam bending by using finite element method vol.54, pp.4, 2015, https://doi.org/10.12989/sem.2015.54.4.755
  17. Effect of various thermal loadings on buckling and vibrational characteristics of nonlocal temperature-dependent functionally graded nanobeams vol.23, pp.12, 2016, https://doi.org/10.1080/15376494.2015.1091524
  18. Dynamic modeling of preloaded size-dependent nano-crystalline nano-structures vol.38, pp.12, 2017, https://doi.org/10.1007/s10483-017-2291-8
  19. Damping Vibration Behavior of Viscoelastic Porous Nanocrystalline Nanobeams Incorporating Nonlocal–Couple Stress and Surface Energy Effects 2017, https://doi.org/10.1007/s40997-017-0127-8
  20. Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories vol.53, pp.6, 2015, https://doi.org/10.12989/sem.2015.53.6.1143
  21. Size-dependent vibration analysis of viscoelastic nanocrystalline silicon nanobeams with porosities based on a higher order refined beam theory vol.166, 2017, https://doi.org/10.1016/j.compstruct.2017.01.036
  22. A new nonlocal hyperbolic shear deformation theory for nanobeams embedded in an elastic medium vol.55, pp.4, 2015, https://doi.org/10.12989/sem.2015.55.4.743
  23. A unified formulation for static behavior of nonlocal curved beams vol.59, pp.3, 2016, https://doi.org/10.12989/sem.2016.59.3.475
  24. A new higher-order shear and normal deformation theory for functionally graded sandwich beams vol.19, pp.3, 2015, https://doi.org/10.12989/scs.2015.19.3.521
  25. Dynamic stability analysis of multi-walled carbon nanotubes with arbitrary boundary conditions based on the nonlocal elasticity theory vol.24, pp.14, 2017, https://doi.org/10.1080/15376494.2016.1227489
  26. A new higher order shear deformation model for functionally graded beams vol.20, pp.5, 2016, https://doi.org/10.1007/s12205-015-0252-0
  27. Static bending and free vibration of FGM beam using an exponential shear deformation theory vol.4, pp.1, 2015, https://doi.org/10.12989/csm.2015.4.1.099
  28. A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory vol.54, pp.4, 2015, https://doi.org/10.12989/sem.2015.54.4.693
  29. On the Thermal Buckling Characteristics of Armchair Single-Walled Carbon Nanotube Embedded in an Elastic Medium Based on Nonlocal Continuum Elasticity vol.45, pp.2, 2015, https://doi.org/10.1007/s13538-015-0306-2
  30. On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams vol.19, pp.5, 2015, https://doi.org/10.12989/scs.2015.19.5.1259
  31. A nonlocal quasi-3D trigonometric plate model for free vibration behaviour of micro/nanoscale plates vol.56, pp.2, 2015, https://doi.org/10.12989/sem.2015.56.2.223
  32. A new simple shear and normal deformations theory for functionally graded beams vol.18, pp.2, 2015, https://doi.org/10.12989/scs.2015.18.2.409
  33. A new higher order shear and normal deformation theory for functionally graded beams vol.18, pp.3, 2015, https://doi.org/10.12989/scs.2015.18.3.793
  34. On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model vol.18, pp.4, 2015, https://doi.org/10.12989/scs.2015.18.4.1063
  35. On the bending and stability of nanowire using various HSDTs vol.3, pp.4, 2015, https://doi.org/10.12989/anr.2015.3.4.177
  36. Nonlinear Free Vibration of Functionally Graded Nanobeams on Nonlinear Elastic Foundation vol.40, pp.1, 2016, https://doi.org/10.1007/s40996-016-0012-5
  37. A nonlocal beam model for out-of-plane static analysis of circular nanobeams vol.76, 2016, https://doi.org/10.1016/j.mechrescom.2016.06.002
  38. Effects of rotary inertia shear deformation and non-homogeneity on frequencies of beam vol.55, pp.4, 2015, https://doi.org/10.12989/sem.2015.55.4.871
  39. A new refined nonlocal beam theory accounting for effect of thickness stretching in nanoscale beams vol.4, pp.4, 2016, https://doi.org/10.12989/anr.2016.4.4.251
  40. A general higher-order nonlocal couple stress based beam model for vibration analysis of porous nanocrystalline nanobeams vol.112, 2017, https://doi.org/10.1016/j.spmi.2017.09.010
  41. A computational shear displacement model for vibrational analysis of functionally graded beams with porosities vol.19, pp.2, 2015, https://doi.org/10.12989/scs.2015.19.2.369
  42. Nonlinear thermal buckling of axially functionally graded micro and nanobeams vol.168, 2017, https://doi.org/10.1016/j.compstruct.2017.02.048
  43. Dynamic modeling and vibration analysis of double-layered multi-phase porous nanocrystalline silicon nanoplate systems vol.66, 2017, https://doi.org/10.1016/j.euromechsol.2017.07.010
  44. CO adsorption on TiO2nanomaterials: nanoparticles, nanotubes and nano-surfaces vol.19, pp.sup10, 2015, https://doi.org/10.1179/1432891715Z.0000000002129
  45. Free vibration analysis of chiral double-walled carbon nanotube using non-local elasticity theory vol.4, pp.1, 2016, https://doi.org/10.12989/anr.2016.4.1.031
  46. Thermomechanical effects on the bending of antisymmetric cross-ply composite plates using a four variable sinusoidal theory vol.19, pp.1, 2015, https://doi.org/10.12989/scs.2015.19.1.093
  47. Propagation of waves in nonlocal porous multi-phase nanocrystalline nanobeams under longitudinal magnetic field pp.1745-5049, 2018, https://doi.org/10.1080/17455030.2018.1506596
  48. Axial magnetic field effects on dynamic characteristics of embedded multiphase nanocrystalline nanobeams vol.24, pp.8, 2018, https://doi.org/10.1007/s00542-018-3771-z
  49. Temperature and porosity effects on wave propagation in nanobeams using bi-Helmholtz nonlocal strain-gradient elasticity vol.133, pp.5, 2018, https://doi.org/10.1140/epjp/i2018-11993-0
  50. A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams vol.19, pp.2, 2017, https://doi.org/10.12989/sss.2017.19.2.115
  51. Bending and stability analysis of size-dependent compositionally graded Timoshenko nanobeams with porosities vol.6, pp.1, 2017, https://doi.org/10.12989/amr.2017.6.1.045
  52. A refined nonlocal hyperbolic shear deformation beam model for bending and dynamic analysis of nanoscale beams vol.5, pp.2, 2013, https://doi.org/10.12989/anr.2017.5.2.113
  53. A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams vol.62, pp.6, 2017, https://doi.org/10.12989/sem.2017.62.6.695
  54. Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory vol.19, pp.6, 2013, https://doi.org/10.12989/sss.2017.19.6.601
  55. Surface effects on vibration and buckling behavior of embedded nanoarches vol.64, pp.1, 2017, https://doi.org/10.12989/sem.2017.64.1.001
  56. Dynamic characteristics of curved inhomogeneous nonlocal porous beams in thermal environment vol.64, pp.1, 2013, https://doi.org/10.12989/sem.2017.64.1.121
  57. Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams vol.25, pp.4, 2013, https://doi.org/10.12989/scs.2017.25.4.415
  58. Vibration analysis of FG nanoplates with nanovoids on viscoelastic substrate under hygro-thermo-mechanical loading using nonlocal strain gradient theory vol.64, pp.6, 2013, https://doi.org/10.12989/sem.2017.64.6.683
  59. Wave dispersion characteristics of nonlocal strain gradient double-layered graphene sheets in hygro-thermal environments vol.65, pp.6, 2018, https://doi.org/10.12989/sem.2018.65.6.645
  60. Multi-dimensional wind vibration coefficients under suction for ultra-large cooling towers considering ventilation rates of louvers vol.66, pp.2, 2013, https://doi.org/10.12989/sem.2018.66.2.273
  61. A unified formulation for modeling of inhomogeneous nonlocal beams vol.66, pp.3, 2013, https://doi.org/10.12989/sem.2018.66.3.369
  62. A new nonlocal HSDT for analysis of stability of single layer graphene sheet vol.6, pp.2, 2013, https://doi.org/10.12989/anr.2018.6.2.147
  63. Buckling response with stretching effect of carbon nanotube-reinforced composite beams resting on elastic foundation vol.67, pp.2, 2018, https://doi.org/10.12989/sem.2018.67.2.125
  64. Bending of a cracked functionally graded nanobeam vol.6, pp.3, 2013, https://doi.org/10.12989/anr.2018.6.3.219
  65. Dynamic analysis of higher order shear-deformable nanobeams resting on elastic foundation based on nonlocal strain gradient theory vol.6, pp.3, 2018, https://doi.org/10.12989/anr.2018.6.3.279
  66. Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections vol.17, pp.2, 2019, https://doi.org/10.12989/gae.2019.17.2.175
  67. Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure vol.7, pp.3, 2019, https://doi.org/10.12989/anr.2019.7.3.181
  68. Analyzing large-amplitude vibration of nonlocal beams made of different piezo-electric materials in thermal environment vol.8, pp.3, 2019, https://doi.org/10.12989/amr.2019.8.3.237
  69. Flexoelectric effects on dynamic response characteristics of nonlocal piezoelectric material beam vol.8, pp.4, 2013, https://doi.org/10.12989/amr.2019.8.4.259
  70. Theoretical Analysis of Free Vibration of Microbeams under Different Boundary Conditions Using Stress-Driven Nonlocal Integral Model vol.20, pp.3, 2013, https://doi.org/10.1142/s0219455420500406
  71. Theoretical analysis on elastic buckling of nanobeams based on stress-driven nonlocal integral model vol.41, pp.2, 2013, https://doi.org/10.1007/s10483-020-2569-6
  72. Mechanical-hygro-thermal vibrations of functionally graded porous plates with nonlocal and strain gradient effects vol.7, pp.2, 2013, https://doi.org/10.12989/aas.2020.7.2.169
  73. A review of effects of partial dynamic loading on dynamic response of nonlocal functionally graded material beams vol.9, pp.1, 2013, https://doi.org/10.12989/amr.2020.9.1.033
  74. Nonlinear vibration of smart nonlocal magneto-electro-elastic beams resting on nonlinear elastic substrate with geometrical imperfection and various piezoelectric effects vol.25, pp.5, 2013, https://doi.org/10.12989/sss.2020.25.5.619
  75. Vibration analysis of nonlocal strain gradient porous FG composite plates coupled by visco-elastic foundation based on DQM vol.9, pp.3, 2020, https://doi.org/10.12989/csm.2020.9.3.201
  76. Dynamic response of size-dependent porous functionally graded beams under thermal and moving load using a numerical approach vol.7, pp.2, 2013, https://doi.org/10.12989/smm.2020.7.2.069
  77. On Nonlinear Bending Study of a Piezo-Flexomagnetic Nanobeam Based on an Analytical-Numerical Solution vol.10, pp.9, 2013, https://doi.org/10.3390/nano10091762
  78. On scale-dependent stability analysis of functionally graded magneto-electro-thermo-elastic cylindrical nanoshells vol.75, pp.6, 2013, https://doi.org/10.12989/sem.2020.75.6.659
  79. Porosity effects on post-buckling behavior of geometrically imperfect metal foam doubly-curved shells with stiffeners vol.75, pp.6, 2013, https://doi.org/10.12989/sem.2020.75.6.701
  80. Nonlocal nonlinear stability of higher-order porous beams via Chebyshev-Ritz method vol.76, pp.3, 2013, https://doi.org/10.12989/sem.2020.76.3.413
  81. Large amplitude free torsional vibration analysis of size-dependent circular nanobars using elliptic functions vol.77, pp.4, 2021, https://doi.org/10.12989/sem.2021.77.4.535
  82. Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory vol.10, pp.3, 2013, https://doi.org/10.12989/anr.2021.10.3.281
  83. Weighted Residual Approach for Bending Analysis of Nanobeam Using by Modified Couple Stress Theory vol.13, pp.2, 2013, https://doi.org/10.24107/ijeas.932580
  84. On static buckling of multilayered carbon nanotubes reinforced composite nanobeams supported on non-linear elastic foundations vol.40, pp.3, 2021, https://doi.org/10.12989/scs.2021.40.3.389
  85. Numerical forced vibration analysis of compositionally gradient porous cylindrical microshells under moving load and thermal environment vol.40, pp.6, 2021, https://doi.org/10.12989/scs.2021.40.6.893