DOI QR코드

DOI QR Code

A superelement formulation for efficient structural analysis in progressive collapse

  • Long, Xu (School of Civil and Environmental Engineering, Nanyang Technological University) ;
  • Yuan, Weifeng (School of Civil and Environmental Engineering, Nanyang Technological University) ;
  • Tan, Kang Hai (School of Civil and Environmental Engineering, Nanyang Technological University) ;
  • Lee, Chi King (School of Civil and Environmental Engineering, Nanyang Technological University)
  • 투고 : 2012.05.28
  • 심사 : 2013.10.20
  • 발행 : 2013.11.10

초록

An integrated superelement concept is proposed to improve the computational efficiency when analyzing structural responses during progressive collapses of large-scale structures, such as multi-storey reinforced concrete buildings. While the proposed methodology is straightforward and can be implemented into an existing finite element program with little effort, it is able to significantly reduce the computational cost without the loss of any critical information of the structural responses. Compared with the models without superelement, significant saving in computational cost and satisfactory prediction accuracy can be obtained with the proposed approach.

키워드

참고문헌

  1. Agrawal, O.P., Danhof, K.J. and Kumar, R. (1994), "A superelement model based parallel algorithm for vehicle dynamics", J. Comput. Struct., 51(4), 411-423. https://doi.org/10.1016/0045-7949(94)90326-3
  2. Argyris, J. (1982), "An excursion into large rotations", Comput. Meth. Appl. Mech. Eng., 32(1-3), 85-155. https://doi.org/10.1016/0045-7825(82)90069-X
  3. Bazant, Z.P. and Verdure, M. (2007), "Mechanics of progressive collapse: learning from World Trade Center and building demolitions", J. Eng. Mech.-ASCE, 133, 308-319. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:3(308)
  4. Belesis, S. and Labeas, G. (2010), "Development of an efficient engineering methodology for non-linear damage and post-buckling analysis of large-scale structures", Int. J. Struct. Integr., 1(2), 126-139. https://doi.org/10.1108/17579861011053862
  5. Belyi, M.V. (1993), "Superelement method for transient dynamic analysis of structural systems", Int. J. Numer. Method. Eng., 36(13), 2263-2286. https://doi.org/10.1002/nme.1620361308
  6. Cardona, A. (2000), "Superelements modelling in flexible multibody dynamics", Multibody Syst. Dyn., 4(2-3), 245-266. https://doi.org/10.1023/A:1009875930232
  7. Cardona, A. and Geradin, M. (1991), "Modeling of superelements in mechanism analysis", Int. J. Numer. Method. Eng., 32(8), 1565-1593. https://doi.org/10.1002/nme.1620320805
  8. Chen, S.H. and Pan, H.H. (1988), "Guyan reduction", Commun. Appl. Numer. M., 4(4), 549-556. https://doi.org/10.1002/cnm.1630040412
  9. Crisfield, M.A. (1990), "A consistent co-rotational formulation for non-linear, three-dimensional, beam-elements", Comput. Meth. Appl. Mech. Eng., 81(2), 131-150. https://doi.org/10.1016/0045-7825(90)90106-V
  10. Crisfield, M.A. (1996), Nonlinear finite element analysis of solid and structures, Wiley, Chinchester.
  11. De Gersem, H., Moens, D., Desmet, W. and Vandepitte, D. (2007), "Interval and fuzzy dynamic analysis of finite element models with superelements", J. Comput. Struct., 85(5-6), 304-319. https://doi.org/10.1016/j.compstruc.2006.10.011
  12. Dvorkin, E.N., Onte, E. and Oliver, J. (1988), "On a non-linear formulation for curved Timoshenko beam elements considering large displacement/rotation increments", Int. J. Numer. Method. Eng., 26(7), 1597-1613. https://doi.org/10.1002/nme.1620260710
  13. Gendy, A.S. and Saleeb, A.F. (1993), "Generalized yield surface representations in the elasto-plastic three-dimensional analysis of frames", J. Comput. Struct., 49(2), 351-362. https://doi.org/10.1016/0045-7949(93)90114-S
  14. Hartmann, D. et al. (2008), "Structural collapse simulation under consideration of uncertainty - Fundamental concept and results", J. Comput. Struct., 86(21-22), 2064-2078. https://doi.org/10.1016/j.compstruc.2008.03.004
  15. Huang, S.J. and Li, P.Z. (2010), "Superelement method based structure simulation of large pallet structure", Second International Conference on Computer Engineering and Applications.
  16. Jacobsen, K.P. (1983), "Fully integrated superelements: a database approach to finite element analysis", J. Comput. Struct., 16(1-4), 307-315. https://doi.org/10.1016/0045-7949(83)90170-0
  17. Ju, F. and Choo, Y.S. (2005), "Super element approach to cable passing through multiple pulleys", Int. J. Solids Struct., 42(11-12), 3533-3547. https://doi.org/10.1016/j.ijsolstr.2004.10.014
  18. Kim, H.S., Lee, D.G. and Kim, C.K. (2005), "Efficient three-dimensional seismic analysis of a high-rise building structure with shear walls", Eng. Struct., 27(6), 963-976. https://doi.org/10.1016/j.engstruct.2005.02.006
  19. Li, Z.X. (2007), "A co-rotational formulation for 3D beam element using vectorial rotational variables", Comput. Mech., 39(3), 309-322.
  20. Long, X., et al. (2012). "A 3D co-rotational beam element with geometric and material nonlinearities for steel and RC framed structures", 4th International Conference on Design and Analysis of Protective Structures, Jeju, Korea.
  21. Maressa, A., Mundo, D., Donders, S. and Desmet, W. (2011), "A wave-based substructuring approach for concept modeling of vehicle joints", J. Comput. Struct., 89(23-24), 2369-2376. https://doi.org/10.1016/j.compstruc.2011.06.011
  22. Marino, S. (1970), "Analysis of space frames", Thesis presented to Lehigh University, Bethlehem, PA., in partial fulfillment of the requirements for the degree of Doctor of Philosophy.
  23. National Institute of Standards and Technology (2005), Federal building and fire safety investigation of the world trade center disaster: Final report on the collapse of the world trade center building 7 (draft for public comment).
  24. Przemieniecki, J.S. (1968), Theory of matrix structural analysis, Mc Graw-Hill Publication, New York.
  25. Qiu, K.P., Zhang, W.H., Domaszewski, M. and Chamoret, D. (2009), "Topology optimization of periodic cellular solids based on a superelement method", Eng. Optimiz., 41(3), 225-239. https://doi.org/10.1080/03052150802414718
  26. Steenbergen, R.D.J.M. (2007), "Super elements in high-rise buildings under stochastic wind load", PhD Thesis, Delft University of Technology.
  27. Unified Facilities Criteria (UFC)-DoD (2005), Design of buildings to resist progressive collapse, Department of Defense.
  28. Wilson, E.L. (1974), "The static condensation algorithm", Int. J. Numer. Method. Eng., 8(1), 198-203. https://doi.org/10.1002/nme.1620080115
  29. Yang, Y.B. and Fan, H.T. (1988), "Yield surface modeling of I-sections with nonuniform torsion", J. Eng. Mech.-ASCE, 114(6), 953-972. https://doi.org/10.1061/(ASCE)0733-9399(1988)114:6(953)
  30. Yuan, W. and Tan, K.H. (2011), "Modeling of progressive collapse of a multi-storey structure using a spring-mass-damper system", Struct. Eng. Mech., 37(1), 79-93. https://doi.org/10.12989/sem.2011.37.1.079
  31. Zemer, D.T. (1979). "Implementation of superelement analysis at the production level", Proceeding of the MSC/NASTRAN Users' Confrence.

피인용 문헌

  1. A new method for progressive collapse analysis of RC frames vol.60, pp.1, 2016, https://doi.org/10.12989/sem.2016.60.1.031
  2. Adaptive superelement modeling for progressive collapse analysis of reinforced concrete frames vol.151, 2017, https://doi.org/10.1016/j.engstruct.2017.08.024
  3. Automated static condensation method for local analysis of large finite element models vol.61, pp.6, 2013, https://doi.org/10.12989/sem.2017.61.6.807
  4. A general solution to structural performance of pre-twisted Euler beam subject to static load vol.64, pp.2, 2013, https://doi.org/10.12989/sem.2017.64.2.205