References
- Agrawal, O.P., Danhof, K.J. and Kumar, R. (1994), "A superelement model based parallel algorithm for vehicle dynamics", J. Comput. Struct., 51(4), 411-423. https://doi.org/10.1016/0045-7949(94)90326-3
- Argyris, J. (1982), "An excursion into large rotations", Comput. Meth. Appl. Mech. Eng., 32(1-3), 85-155. https://doi.org/10.1016/0045-7825(82)90069-X
- Bazant, Z.P. and Verdure, M. (2007), "Mechanics of progressive collapse: learning from World Trade Center and building demolitions", J. Eng. Mech.-ASCE, 133, 308-319. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:3(308)
- Belesis, S. and Labeas, G. (2010), "Development of an efficient engineering methodology for non-linear damage and post-buckling analysis of large-scale structures", Int. J. Struct. Integr., 1(2), 126-139. https://doi.org/10.1108/17579861011053862
- Belyi, M.V. (1993), "Superelement method for transient dynamic analysis of structural systems", Int. J. Numer. Method. Eng., 36(13), 2263-2286. https://doi.org/10.1002/nme.1620361308
- Cardona, A. (2000), "Superelements modelling in flexible multibody dynamics", Multibody Syst. Dyn., 4(2-3), 245-266. https://doi.org/10.1023/A:1009875930232
- Cardona, A. and Geradin, M. (1991), "Modeling of superelements in mechanism analysis", Int. J. Numer. Method. Eng., 32(8), 1565-1593. https://doi.org/10.1002/nme.1620320805
- Chen, S.H. and Pan, H.H. (1988), "Guyan reduction", Commun. Appl. Numer. M., 4(4), 549-556. https://doi.org/10.1002/cnm.1630040412
- Crisfield, M.A. (1990), "A consistent co-rotational formulation for non-linear, three-dimensional, beam-elements", Comput. Meth. Appl. Mech. Eng., 81(2), 131-150. https://doi.org/10.1016/0045-7825(90)90106-V
- Crisfield, M.A. (1996), Nonlinear finite element analysis of solid and structures, Wiley, Chinchester.
- De Gersem, H., Moens, D., Desmet, W. and Vandepitte, D. (2007), "Interval and fuzzy dynamic analysis of finite element models with superelements", J. Comput. Struct., 85(5-6), 304-319. https://doi.org/10.1016/j.compstruc.2006.10.011
- Dvorkin, E.N., Onte, E. and Oliver, J. (1988), "On a non-linear formulation for curved Timoshenko beam elements considering large displacement/rotation increments", Int. J. Numer. Method. Eng., 26(7), 1597-1613. https://doi.org/10.1002/nme.1620260710
- Gendy, A.S. and Saleeb, A.F. (1993), "Generalized yield surface representations in the elasto-plastic three-dimensional analysis of frames", J. Comput. Struct., 49(2), 351-362. https://doi.org/10.1016/0045-7949(93)90114-S
- Hartmann, D. et al. (2008), "Structural collapse simulation under consideration of uncertainty - Fundamental concept and results", J. Comput. Struct., 86(21-22), 2064-2078. https://doi.org/10.1016/j.compstruc.2008.03.004
- Huang, S.J. and Li, P.Z. (2010), "Superelement method based structure simulation of large pallet structure", Second International Conference on Computer Engineering and Applications.
- Jacobsen, K.P. (1983), "Fully integrated superelements: a database approach to finite element analysis", J. Comput. Struct., 16(1-4), 307-315. https://doi.org/10.1016/0045-7949(83)90170-0
- Ju, F. and Choo, Y.S. (2005), "Super element approach to cable passing through multiple pulleys", Int. J. Solids Struct., 42(11-12), 3533-3547. https://doi.org/10.1016/j.ijsolstr.2004.10.014
- Kim, H.S., Lee, D.G. and Kim, C.K. (2005), "Efficient three-dimensional seismic analysis of a high-rise building structure with shear walls", Eng. Struct., 27(6), 963-976. https://doi.org/10.1016/j.engstruct.2005.02.006
- Li, Z.X. (2007), "A co-rotational formulation for 3D beam element using vectorial rotational variables", Comput. Mech., 39(3), 309-322.
- Long, X., et al. (2012). "A 3D co-rotational beam element with geometric and material nonlinearities for steel and RC framed structures", 4th International Conference on Design and Analysis of Protective Structures, Jeju, Korea.
- Maressa, A., Mundo, D., Donders, S. and Desmet, W. (2011), "A wave-based substructuring approach for concept modeling of vehicle joints", J. Comput. Struct., 89(23-24), 2369-2376. https://doi.org/10.1016/j.compstruc.2011.06.011
- Marino, S. (1970), "Analysis of space frames", Thesis presented to Lehigh University, Bethlehem, PA., in partial fulfillment of the requirements for the degree of Doctor of Philosophy.
- National Institute of Standards and Technology (2005), Federal building and fire safety investigation of the world trade center disaster: Final report on the collapse of the world trade center building 7 (draft for public comment).
- Przemieniecki, J.S. (1968), Theory of matrix structural analysis, Mc Graw-Hill Publication, New York.
- Qiu, K.P., Zhang, W.H., Domaszewski, M. and Chamoret, D. (2009), "Topology optimization of periodic cellular solids based on a superelement method", Eng. Optimiz., 41(3), 225-239. https://doi.org/10.1080/03052150802414718
- Steenbergen, R.D.J.M. (2007), "Super elements in high-rise buildings under stochastic wind load", PhD Thesis, Delft University of Technology.
- Unified Facilities Criteria (UFC)-DoD (2005), Design of buildings to resist progressive collapse, Department of Defense.
- Wilson, E.L. (1974), "The static condensation algorithm", Int. J. Numer. Method. Eng., 8(1), 198-203. https://doi.org/10.1002/nme.1620080115
- Yang, Y.B. and Fan, H.T. (1988), "Yield surface modeling of I-sections with nonuniform torsion", J. Eng. Mech.-ASCE, 114(6), 953-972. https://doi.org/10.1061/(ASCE)0733-9399(1988)114:6(953)
- Yuan, W. and Tan, K.H. (2011), "Modeling of progressive collapse of a multi-storey structure using a spring-mass-damper system", Struct. Eng. Mech., 37(1), 79-93. https://doi.org/10.12989/sem.2011.37.1.079
- Zemer, D.T. (1979). "Implementation of superelement analysis at the production level", Proceeding of the MSC/NASTRAN Users' Confrence.
Cited by
- A new method for progressive collapse analysis of RC frames vol.60, pp.1, 2016, https://doi.org/10.12989/sem.2016.60.1.031
- Adaptive superelement modeling for progressive collapse analysis of reinforced concrete frames vol.151, 2017, https://doi.org/10.1016/j.engstruct.2017.08.024
- Automated static condensation method for local analysis of large finite element models vol.61, pp.6, 2013, https://doi.org/10.12989/sem.2017.61.6.807
- A general solution to structural performance of pre-twisted Euler beam subject to static load vol.64, pp.2, 2013, https://doi.org/10.12989/sem.2017.64.2.205