DOI QR코드

DOI QR Code

A Study on the Measurement of Moisture Content in the Organic Soils

유기질토의 함수비 측정에 관한 연구

  • 박성식 (경북대학교 공과대학 건축토목공학부 토목공학전공) ;
  • 최선규 (경북대학교 공과대학 건축토목공학부) ;
  • 류주형 (경북대학교 공과대학 건축토목공학부)
  • Received : 2013.07.08
  • Accepted : 2013.09.04
  • Published : 2013.10.31

Abstract

Organic soils are widely distributed at Youngdong areas in Kangwon prefecture and Jeonbuk area. Such organic soils usually consist of undecomposed fiber materials. It is difficult to exactly measure the water content of such organic soils because some organic materials may decompose at $110^{\circ}C$ in drying oven. In this study, both drying oven and microwave oven methods are used to measure the water content of organic soils. Three different levels of oven temperature, $60^{\circ}C$, $80^{\circ}C$, and the standard temperature of $110^{\circ}C$, were used to measure the water content of organic soils in the 1st, 2nd, and 3rd day. The water content by microwave oven was measured for two different sample masses (30, 60 g) with five different measuring times (3, 6, 9, 12, 15 min.). As the temperature increased, the water content of organic soils increased due to the decomposition of organic materials in soils. The water content of some soils increased up to 2 times as the temperature was increased from $60^{\circ}C$ to $110^{\circ}C$. However, the water content was not changed after the 1st day, regardless of drying oven temperature and soil types. The water content by microwave oven became constant after 12 min. for the 30 g sample and 15 min. for the 60 g sample used. The measured water content by microwave oven was similar to that measured by drying oven at $60^{\circ}C$.

강원 영동지역이나 전북지역에는 유기질 함량이 높은 흙이 많이 분포하고 있다. 이와 같은 유기질토는 주로 미분해된 섬유질로 구성되어 있으므로 흙의 함수비를 측정하기 위하여 $110^{\circ}C$의 건조로에 넣고 함수비를 측정할 경우 흙속에 포함된 유기질 성분이 분해될 수 있기 때문에 정확한 함수비 측정이 어렵다. 따라서 본 연구에서는 건조로뿐 아니라 전자레인지를 이용하여 유기질토의 함수비 측정방법에 대하여 연구하였다. 국내에서 채취한 유기질 성분이 높은 흙뿐 아니라 모래, 실트, 카올리나이트와 같은 일반 흙도 실험하였다. 먼저 건조로의 온도를 표준 온도인 $110^{\circ}C$를 포함하여 $60^{\circ}C$ 또는 $80^{\circ}C$로 설정하여 흙의 함수비를 1일, 2일 및 3일 후 각각 측정하였다. 또한, 전자레인지를 이용하여 시료의 무게(30g, 60g)와 측정시간(3, 5, 9, 12, 15분)을 달리하면서 흙의 함수비를 측정하였다. 유기질토의 경우 건조로의 온도가 높을수록 흙 속에 포함된 유기질 성분이 분해되면서 함수비는 증가하였으며, 일부 시료의 경우 $60^{\circ}C$보다 $110^{\circ}C$에서 최대 2배까지 증가하였다. 한편 건조로 측정시간에 따른 함수비 변화는 대부분 온도나 유기질 함량에 관계없이 1일 후 함수비 변화가 미미하였다. 전자레인지를 사용하여 흙의 함수비를 측정한 경우 시료의 양이 30g인 경우에는 12분 그리고 60g인 경우에는 15분 정도에서 함수비가 일정하게 수렴하였으며, 전자레인지를 이용하여 측정한 함수비는 건조로 $60^{\circ}C$에서 측정한 함수비와 유사한 경향을 보였다.

Keywords

References

  1. Adams, J. I. (1961), Laboratory Compression Tests on Peat, Proc. Seventh Muskeg Res. Conference, NRC. ACSSM, Tech, Vol.71, pp.36-54.
  2. ASTM D2216, Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass, Annual Book of ASTM Standards, Vol.04.08, ASTM International, West Conshohocken, PA, pp.1135-1139.
  3. ASTM D4643, Test Method for Determination of Water (Moisture) Content of Soil by the Microwave Oven Heating, Annual Book of ASTM Standards, Vol. 04.08, ASTM International, West Conshohocken, PA.
  4. ASTM D4944, Test Method for Field Determination of Water (Moisture) Content of Soil by the Calcium Carbide Gas Pressure Tester, Annual Book of ASTM Standards, Vol. 04.08, ASTM International, West Conshohocken, PA.
  5. Choi, I. G. (1995), A Study on Engineering Characteristics for Organic Soil in Sam-Cheok, Master thesis, Dongguk University.
  6. Chung, Y. S. and Hwang, J. Y. (2002), Organics Included in the Sediments from Daecheong and Keum-River Estuary Reservoirs, Journal of the Korean Society for Environmental Analysis, Vol.5, No.2, pp.113-118.
  7. Jang, D. H. (2011), An Experimental Study on the Engineering Characteristics of Organic Soil in Dong-Hae, Master thesis, Kwandong University.
  8. Kang, C. K., Lee, P. Y., Park, J. S., and Kim, P. J. (1993), On the Distribution of Organic Matter in the Nearshore Surface Sediment of Korea, Bull. Korean Fish. Society, Vol.26, No.6, pp.557-566.
  9. Kang, D. H., Kim, S. S., Jung, H. J., Kwon, B. H., and Kim, I. K. (2007), The Characteristics of Sediment and Organic Content in the Dalpo Wetland, Journal of Korean Wetlands Society, Vol.9, No.3, pp.1-12.
  10. Kim, S. K., Choi, I. G., and Park, Y. M. (1996), Engineering Characteristics of Sam-Cheok Organic Soil, Journal of Korean Geotechnical Society, Vol.12, No.1, pp.21-33.
  11. Kogure, K. and Ohira, Y. (1977), Statistical Forecasting of Compressibility of Peaty Ground, Canadian Geotechnical Journal, Vol.14, pp.562-570. https://doi.org/10.1139/t77-057
  12. KS F2104, Test Method of organic matter in soils by ignition loss, Korean Industrial Standards.
  13. KS F2306, Test method for water content of Soils, Korean Industrial Standards.
  14. Lee, H. J., Kim, W. S., Lee, K. S., Kim, B.S., Ahn, B. S., and Khan, Ajmal (2006), Using a Microwave Oven to Determine Moisture in Feed, The Conference of The Korean Society of Grassland and Forage Science, pp.132-133.
  15. Park, P. Y. (2009), Compaction Characteristics of Weathered Soil and Kaolinite Mixed with Organic Material, Master thesis, Gwangju University.
  16. Shin, B. W., Bae, W. S., An, B. H., and Shin, J. H. (2000), The Consolidation Characteristics of Refuse Landfill Site due to Organic Contents Variation, Journal of the Institute of Construction Technology, Vol.19, No.2, pp.69-78.
  17. STP 205-8, Standard Test Procedure Manual for Moisture by Microwave oven, Saskatchewan Highways and Transportation.
  18. Yasuhara, K. and Takenaka, H. (1977), Physical and mechanical properties, In Yamanouchi, T. (ed.), Engineering Problems of Organic Soils in Japan, Japanese Society of Soil Mechanics and Foundation Engineering, pp.35-48.

Cited by

  1. Effect of Wetting Conditions on the In Situ Density of Soil Using the Sand-Cone Method vol.11, pp.2, 2013, https://doi.org/10.3390/app11020718