DOI QR코드

DOI QR Code

Hall effect of K-doped $BaFe_2As_2$ superconducting thin films

  • Received : 2013.09.06
  • Accepted : 2013.09.26
  • Published : 2013.09.30

Abstract

We have studied Hall effect for potassium (K)-doped $BaFe_2As_2$ superconducting thin films by analyzing the relation between the longitudinal resistivity (${\rho}_{xx}$) and the Hall resistivity (${\rho}_{xy}$). The thin films used in this study were fabricated on $Al_2O_3$ (000l) substrates by using an ex-situ pulsed laser deposition (PLD) technique under a high-vacuum condition of ~$10^{-6}$ Torr. The samples showed the high superconducting transition temperatures ($T_c$) of ~ 40 K. The ${\rho}_{xx}$ and the ${\rho}_{xy}$ for K-doped $BaFe_2As_2$ thin films were measured by using a physical property measurement system (PPMS) with a temperature sweep (T-sweep) mode at an applied current density of $100A/cm^2$ and at magnetic fields from 0 up to 9 T. We report the T-sweep results of the ${\rho}_{xx}$and the ${\rho}_{xy}$ to investigate Hall scaling behavior on the basis of the relation of ${\rho}_{xy}={A{\rho}_{xx}}^{\beta}$. The ${\beta}$ values are $3.0{\pm}0.2$ in the c-axis-oriented K-doped $BaFe_2As_2$ thin films, whereas the thin films with various oriented-directions like a polycrystal showed slightly lower ${\beta}$ than that of c-axis-oriented thin films. Interestingly, the ${\beta}$ value is decreased with increasing magnetic fields.

Keywords

References

  1. S. J. Hagen, C. J. Lobb, R. L. Greene, M. G. Forrester, and J. H. Kang, Phys. Rev. B 41, pp. 11630, 1990. https://doi.org/10.1103/PhysRevB.41.11630
  2. J. Luo, T. P. Orlando, J. M. Graybeal, X. D. Wu, and R. Muenchausen, Phys. Rev. Lett. 68, pp. 690, 1992. https://doi.org/10.1103/PhysRevLett.68.690
  3. A. V. Samoilov, Phys. Rev. Lett. 71, pp. 617, 1993. https://doi.org/10.1103/PhysRevLett.71.617
  4. R. C. Budhani, S. H. Liou, and Z. X. Cai, Phys. Rev. Lett. 71, pp. 621, 1993. https://doi.org/10.1103/PhysRevLett.71.621
  5. W. N. Kang, D. H. Kim, S. Y. Shim, J. H. Park, T. S. Hahn, S. S. Choi, W. C. Lee, J. D. Hettinger, K. E. Gray, and B. Glagola, Phys. Rev. Lett. 76, pp. 2993, 1996. https://doi.org/10.1103/PhysRevLett.76.2993
  6. W. N. Kang, H.-J. Kim, E.-M. Choi, H. J. Kim, K. H. P. Kim, and S.-I. Lee, Phys. Rev. B 65, pp. 184520, 2002. https://doi.org/10.1103/PhysRevB.65.184520
  7. W. N. Kang, H. J. Kim, H.-J. Kim, E.-M. Choi, K. H. P, Kim, H. S. Lee, and S.-I. Lee, Supercond. Sci. Technol. 16, pp. 237-240, 2003. https://doi.org/10.1088/0953-2048/16/2/319
  8. W. N. Kang, C. U. Jung, K. H. P. Kim, M.-S. Park, S. Y. Lee, H.-J. Kim, E.-M. Choi, K. H. Kim, M.-S. Kim, and S.-I. Lee, Appl. Phys. Lett. 79, pp. 982-984, 2001. https://doi.org/10.1063/1.1392979
  9. F. Rullier-Albenque, D. Colson, A. Forget, and H. Alloul, Phys. Rev. Lett. 103, pp. 057001, 2009. https://doi.org/10.1103/PhysRevLett.103.057001
  10. L. M. Wang, U.-C. Sou, H. C. Yang, L. J. Chang, C.-M. Cheng, K.-D. Tsuei, Y. Su, T. Wolf, and P. Adelmann, Phys. Rev. B 83, pp. 134506, 2011. https://doi.org/10.1103/PhysRevB.83.134506
  11. H. Sato, T. Katase, W. N. Kang, H. Hiramatsu, T. Kamiya, and H. Hosono, Phys. Rev. B 87, pp. 064504, 2013. https://doi.org/10.1103/PhysRevB.87.064504
  12. Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, pp. 3296, 2008. https://doi.org/10.1021/ja800073m
  13. N. H. Lee, S.-G. Jung, D. H. Kim, and W. N. Kang: Appl. Phys. Lett. 96, pp. 202505, 2010. https://doi.org/10.1063/1.3431583
  14. W. N. Kang, H.-J. Kim, E.-M. Choi, H. J. Kim, K. H. P. Kim, H. S. Lee, and S.-I. Lee, Phys. Rev. B 65, pp. 134508, 2002. https://doi.org/10.1103/PhysRevB.65.134508
  15. J. D. Weiss, C. Tarantini, J. Jiang, F. Kametani, A. A. Polyanskii, D. C. Larbalestier and E. E. Hellstrom, Nat. Mater. 11, pp. 682, 2012. https://doi.org/10.1038/nmat3333
  16. J. G. Checkelsky, R. Thomale, Lu Li, G. F. Chen, J. L. Luo, N. L. Wang, and N. P. Ong, Phys. Rev. B 86, pp. 180502, 2012. https://doi.org/10.1103/PhysRevB.86.180502
  17. H. Yang, H. Luo, Z. Wang, and H.-H. Wen, Appl. Phys. Lett. 93, pp. 142506, 2008. https://doi.org/10.1063/1.2996576
  18. H. Q. Yuan, J. Singleton, F. F. Balakirev, S. A. Baily, G. F. Chen, J. L. Luo, and N. L. Wang, Nature 457, pp. 565-568, 2009. https://doi.org/10.1038/nature07676
  19. A. T. Dorsey, Phys. Rev. B 46, pp. 8376, 1992. https://doi.org/10.1103/PhysRevB.46.8376
  20. V. M. Vinokur, V. B. Geshkenbein, M. V. Feigel'man, and G. Blatter, Phys. Rev. Lett. 71, pp. 1242, 1993. https://doi.org/10.1103/PhysRevLett.71.1242
  21. Z. D. Wang, J. D. Dong, and C. S. Ting, Phys. Rev. Lett. 72, pp. 3875, 1994. https://doi.org/10.1103/PhysRevLett.72.3875

Cited by

  1. Optical properties of Ba 0.6 K 0.4 Fe 2 As 2 thin film prepared by pulsed laser deposition and subsequent post-annealing process vol.17, pp.7, 2017, https://doi.org/10.1016/j.cap.2017.03.024