DOI QR코드

DOI QR Code

Litter Production and Soil Organic Carbon Dynamincs of Pinus densiflora, Quercus mongolica and Robinia pseudo-acacia Forests in Mt. Nam

남산의 소나무림, 신갈나무림, 아까시나무림의 낙엽생산과 토양유기탄소 동태

  • Jeong, Heon-Mo (Department of Biology, Kongju National University) ;
  • Kim, Hae-Ran (Department of Biology, Kongju National University) ;
  • Shin, Dong-Hoon (Department of Biology, Kongju National University) ;
  • Lee, Kyoung-Mi (Department of Biology, Kongju National University) ;
  • Lee, Seung-Hyuk (Department of Biology, Kongju National University) ;
  • Han, Young-Sub (Department of Biology, Kongju National University) ;
  • Jang, Rae-Ha (Department of Biology, Kongju National University) ;
  • Lee, Sang-Kyeong (Miju Ecosystem Institute, Department of Environment Assement) ;
  • Kim, Tae-Kyu (National Institute of Environmental Reaserch, Ecosystem Assessment Team) ;
  • You, Young-Han (Department of Biology, Kongju National University)
  • 정헌모 (공주대학교 자연과학대학 생명과학과) ;
  • 김해란 (공주대학교 자연과학대학 생명과학과) ;
  • 신동훈 (공주대학교 자연과학대학 생명과학과) ;
  • 이경미 (공주대학교 자연과학대학 생명과학과) ;
  • 이승혁 (공주대학교 자연과학대학 생명과학과) ;
  • 한영섭 (공주대학교 자연과학대학 생명과학과) ;
  • 장래하 (공주대학교 자연과학대학 생명과학과) ;
  • 이상경 (미주생태연구원 환경영향평가사업부) ;
  • 김태규 (국립환경과학원 자연평가연구팀) ;
  • 유영한 (공주대학교 자연과학대학 생명과학과)
  • Received : 2012.09.21
  • Accepted : 2013.05.27
  • Published : 2013.06.30

Abstract

The objective of this study was to estimate dynamics of litter production and soil organic carbon of Pinus densiflora forest, Quercus mongolica forest, and Rhobina pseudo-acasia forest at Mt. Nam as a part of Korea National Long-Term Ecological Research (KNLTER) from 2008 to 2009. Litter production of P. densiflora forest was the highest in October 2008, 2009 and the lowest in January 2008 and December 2009. Litter production of Q. mongolica forest was the highest in November and the lowest in February in 2008 and 2009. Litter production of R. pseudo-acacia forest was the highest in November in 2008 and October in 2009 and the lowest in January in 2008 and December in 2009. It means that leaves of P. densiflora forest shed earlier than deciduous oak forests in Korean central region. An average of litter production for 2 years was 7.07, 6.36, $4.66ton\;ha^{-1}$ in P. densiflora forest, Q. mongolica forest, R. psuedo-acacia forest, respectively. An average of soil organic carbon matter for 2 years was 88.3, 76.5, $84.2ton\;ha^{-1}$ in P. densiflora forest, Q. mongolica forest, R. psuedo-acacia forest, respectively.

남산의 소나무림, 신갈나무림 그리고 아까시나무림에서 2008년 1월부터 2009년 12월까지의 월별 낙엽생산량과 토양의 유기탄소량을 조사하였다. 소나무림은 2008년과 2009년 모두 10월에 낙엽생산량이 가장 많았으며, 2008년 1월과 2009년 12월에 낙엽생산량이 가장 적었다. 신갈나무림은 2008년과 2009년 모두 11월에 낙엽생산량이 가장 많았으며, 2월에 낙엽생산량이 가장 적었다. 아까시나무림은 2008년 11월과 2009년 10월에 낙엽생산량이 가장 많았으며, 2008년 1월과 2009년 12월에 낙엽생산량이 가장 적었다. 이것은 한반도 중부에서 상록성의 소나무림이 낙엽성의 참나무숲 보다 더 일찍 낙엽이 진다는 것을 의미한다. 소나무림과 신갈나무림, 아까시나무림의 2년 평균의 낙엽생산량은 7.07, 6.36, $5.02ton\;ha^{-1}$로 소나무가 가장 많았다. 소나무림과 신갈나무림, 아까시나무림의 2년 평균의 토양유기탄소량은 76.2, 68.6, $72.5ton\;C\;ha^{-1}$로 소나무림에서 가장 많았다. 이처럼 소나무숲에서 높게 나타난 것은 남산에서 신갈나무나 아까시나무를 벌목하여 임목밀도가 줄었기 때문이다.

Keywords

References

  1. Berg B and G Agren. 1984. Decomposition of needle litter and its organic chemical components of needle litter during decomposition. In long-term decomposition in a scots pine forest I. Can. J. Bot. 60:1310-1319.
  2. Berg B and O Theander. 1984. Dynamics of some nitrogen fraction in decomposition Scots pine needle litter. Pedobiologia 27:264-267.
  3. Black CA. 1965. Methods of Soil Analysis, Part 2. American Society of Agronomy, Inc., Madison, Wisconsin.
  4. Bray JR and E Gorham. 1964. Litter production in forests of the world. Adv. Ecol. Res. 2:101-157. https://doi.org/10.1016/S0065-2504(08)60331-1
  5. Choi HJ. 2007. Organic carbon distribution and budget in Quercus variabilis and Quercus mongolica forests at Mt. Worak national park. MS Thesis. Kongju National University, Kongju, Korea (in Korean).
  6. Grace J. 2005. Role of forest biomass in the global barbon balance. pp.19-45. In The carbon balance of forest biomass (Griffiths H and PG Jarvis eds.). Taylor and Francis. USA. 335pp.
  7. Han AR and HT Mun. 2009. Distribution of organic carbon in pitch pine plantation in Kongju, Korea. J. Ecol. Field Biol. 32:27-31. https://doi.org/10.5141/JEFB.2009.32.1.027
  8. Hontoria C, R Murillo, J Carlos and A Saa. 1999. Relationships between soil organic carbon and site charcteristics in Peninsular Spain. Soil Sci. Soc. Am. J. 63: 614-621. https://doi.org/10.2136/sssaj1999.03615995006300030026x
  9. Hoover CM, WB Leak and BG Keel. 2012. Benchmark carbon stocks from old-growth forests in northern New England, USA. Forest Ecol. Manage. 266:108-114. https://doi.org/10.1016/j.foreco.2011.11.010
  10. Jeon IY, CH Shin, GH Kim and HT Mun. 2007. Organic carbon distribution of the Pinus densiflora forest on Songgye Valley at Mt. Worak National Prak. J. Ecol. Field Biol. 30: 17-21 (in Korean). https://doi.org/10.5141/JEFB.2007.30.1.017
  11. Joo HT and HT Mun. 1994. Litter production and decomposition in the Quercus acutissima and Pinus rigida forests. Journal of Ecology and Field Biology 17:345-353 (in Korean).
  12. Kim JG and NK Jang. 1989. Litter production and decomposition in the pinus Rigida plantation in Mt. Kwan-ak. Journal of Ecology and Field Biology 12:9-20 (in Korean).
  13. Kim SB. 2008. Soil $CO_{2}$ efflux and leaf-litter decomposition in Pinus densiflora and Quercus variabilis stands. MS Thesis. Chonnam National University, Gwangju, Korea. p. 50 (in Korean).
  14. Kimble JM, RA Birdsey, R Lal and LS Heath. 2003. Introduction and general description of U.S. forests. pp. 3. In The Potential of U.S. Forest Soils to Sequester Carbon and Mitigate the Greenhouse Effect (Kimble JM, LS Heath, RA Birdsey and R Lal eds.). Lewis Publishers, USA.
  15. Korea meteorological administration. 2008. Annual climatological report 2008. Korea meteorological administration Press. p. 25 (in Korean).
  16. Korea meteorological administration. 2009. Annual climatological report 2008. Korea meteorological administration Press. p. 25 (in Korean).
  17. Korea national park. 2010. Resource monitoring of Sobaeksan nationl park in 2010 . Korea national park Press, Seoul. p. 31 (in Korean).
  18. Kwak TB. 2008. Comparative study for the phytomass, NPP and organic carbon budget among Quercus mongolica, Quercus mongolica-Abies holophylla and Pinus densiflora communities in Mt. Jumbong, Korea. MS Thesis. Gangneung National University, Gangneung, Korea (in Korean).
  19. Kwak YS and JH Kim. 1992. Secular changes of density, litterfall, phytomass and primary productivity in mongolian oak (Quercus mongolica) forest. Korean J. Ecol. 15:19-33.
  20. Kwak YS and JH Kim. 1992. Nutrient Cyclings in Mongolian Oak (Quercus mongolica) Forest. Korean J. Ecol. 15:35-46.
  21. Lee IK and YW Son. 2006a. Effects of nitrogen and phosphorus fertilization on soil chemical properties of Pinus rigida and Larix leptolepis plantations in Yangpyeong area, Gyeonggi Province. J. Korean Forest. Soc. 95:82-90 (in Korean).
  22. Lee IK and YW Son. 2006b. Effects of nitrogen and phosphorus fertilization on nutrient dynamics and litterfall production of Pinus rigida and Larix kaempferi. J. Ecol. Field Biol. 39:205-212 (in Korean).
  23. Lee KJ and HT Mun. 2005. Organic carbon distribution in an oak forest. J. Ecol. Field Biol. 28:265-270 (in Korean). https://doi.org/10.5141/JEFB.2005.28.5.265
  24. Lee KJ and IH Park. 1987. Primary production and nutrients distribution in 22-year-old Pinus koraiensis and Quercus Mongolica stands in Kwangju district. J. Korean Forest Energy 7:11-21 (in Korean).
  25. Lee KJ. 2003. A study on the organic carbon distribution in forests. ecosystems. MS Thesis. Kongju National University, Kongju, Korea (in Korean).
  26. Lim KB. 1979. Research on the damage conditions of Namsan park forest and its measures. Report of Seoul Metropolitan, Seoul. p. 134 (in Korean).
  27. Liu CJ, CJ Wetman, B Bergs and W Kutsch. 2004. Variation in litterfall-climte relationships between coniferous and broadleaf forests in Eurasia. Global Ecol. Biogeogr. 13:105-114. https://doi.org/10.1111/j.1466-882X.2004.00072.x
  28. Lousier JD and D Parkinson. 1978. Chemical element dynamics in decomposing leaf litter. Canadian Journal of Botany 56: 233-240.
  29. Ministry of environment. 2010. Korea national long-term ecological research. NIER Press, Inchon. p. 688 (in Korean).
  30. Ministry of environment. 2011. Korea national long-term ecological research. NIER, Inchon. p. 1682 (in Korean).
  31. Morris SJ and EA Paul. 2003. Forest soil ecology and soil organic carbon. CRC Press, New York. pp. 109-125.
  32. Namgung J and HT Mun. 2009. Litterfall and nutrient input via litterfall in Pinus densiflora forest at Mt. Worak national park. Korean J. Environ. Biol. 27:261-265 (in Korean).
  33. Ovington JD and D Heitkamp. 1960. The accumulation of energy in forest plantation in Berlin. Ecology 48:639-646. https://doi.org/10.2307/2257339
  34. Park BK. 1987. Vegetation and soil factors of Namsan Park (Seoul). Nat. Conserv. 60:13-18 (in Korean).
  35. Park JY, CS Kim, JY Jeong, JK Byun, YH Son and MJ Yi. 2008. Effect of fertilization on litterfall amounts in a Quercus acutissima stand. J. Korean Forest. Soc. 97:582-588 (in Korean).
  36. Sharma E and R Ambasht. 1987. Litterfall, decomposition and nutrient release in an age sequence of leaves during processing in a woodland stream. Ecology 57:720-727.
  37. Shin CH, HY Won and HT Mun. 2011. Litter production and nutrient input via litterfall in Quercus mongolica forest at Mt. Worak National Park. J. Ecol. Field Biol. 34:107-113. https://doi.org/10.5141/JEFB.2011.013
  38. Turner J and MJ Lamber. 1986. Nutrition and nutritional relationships of Pinus radiata. Ann. Rev. Ecol. Syst. 17:325-350. https://doi.org/10.1146/annurev.es.17.110186.001545
  39. Usuga JCL. Jorge andes rodriguez toro. Mailing vanessa ramirez. Alvaro de jesus lema tapis. 2010. Forest Ecol. Manage. 260:1906-1913 https://doi.org/10.1016/j.foreco.2010.08.040
  40. Vitousek PM. 1991. Can planted forests counteract increasing atmospheric carbon $CO_{2}$ budget. Science 247:1431-1438.
  41. Wiegert RG and CD Monk. 1972. Litter production and energy accumulation in three plantations of longleaf pine (Pinus palustris Mill.). Ecology 53:949-953. https://doi.org/10.2307/1934314