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Abstract

Chromatin remodelers that include histone methyl transferases (HMTases) are becoming a focal point in cancer drug development. The NSD family
of three HMTases, NSD1, NSD2/MMSET/WHSC1, and NSD3/WHSC1L are bona fide oncogenes found aberrantly expressed in several cancers, suggesting
their potential role for novel therapeutic strategies. Several histone modifiers including HMTase have clear roles in human carcinogenesis but the
extent of their functions and regulations are not well understood, especially in pathological conditions. The extents of the NSDs biological roles in
normal and pathological conditions remain unclear. In particular, the substrate specificity of the NSDs remains unsettled and discrepant data has been
reported. NSD2/MMSET is a focal point for therapeutic interventions against multiple myeloma and especially for t(4;14) myeloma, which is associated
with a significantly worse prognosis than other biological subgroups. Multiple myeloma is the second most common hematological malignancy in
the United States, after non-Hodgkin lymphoma. Herein, as a first step before entering a pipeline for protein x-ray crystallography, we cloned, recombinantly
expressed and purified the catalytic SET domain of NSD2. Next, we demonstrated the catalytic activities, in vitro, of the recombinantly expressed
NSD2-SET on H3K36 and H4K20, its biological targets at the chromatin.
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Introduction1)

NSD1, NSD2/MMSET/WHSC1 and NSD3/WHSC1L1 composethe

nuclear receptor binding SET domain (NSD) family classified

into the histone methyltransferase (HMTase) KMT3 family. The

NSDs are histone modifiers that participate in maintaining the

chromatin. The NSDs predominantly methylate histone H3

lysine 36 (H3K36) and histone H4 lysine 20 (H4K20) at the

chromatin (Lucio-Eterovic et al. 2010 Pei et al. 2011; Wagner

and Carpenter, 2012). Lysine methylation or any of the other

histone modifications, such as phosphorylation, acetylation and

citrullination participates to the dynamic remodeling of the

chromatin and ultimately contribute to regulating the

transcription. Epigenetic marks on H3K4, H3K9, H3K27,

H3K36, H3K79 and H4K20 play primary roles in chromatin

remodelling and contribute to the histone code that remains

obscure (Strahl and Allis 2000).

The NSDs are large multi-domains proteins with four zinc finger

domains, two PWWP domains, and a catalytic SET domain

(Figure1). The function of PHD1-3 and PWWP1-2 domains

of the three NSDs at the chromatin remains elusive. However,

the recent study by He et al. demonstrated the role of the

conserved PHD4 domain to localize the NSDs on histone H3,

strongly suggesting that PHD4 functions as a histone-lysine

mark recognition module to position the catalytic SET domain

on its lysine substrate (He et al. 2013). The PHD4 domain

is located 36-residues distance upstream of the postSET

subdomain. Due to its immediate vicinity to the postSET

subdomain, the PHD4 may be structurally part of the catalytic

SET domain as well. Similarly, the PWWP2 domain is also

conserved across NSDs and is downstream the preSET

subdomain, but at a greater 72-residues distance compared to

PHD4-postSET (36-residues). However, the role of this PWWP2

domain remains unclear.

A rapidly increasing amount of evidence highlights the

importance of epigenetic deregulation in numerous carcinogenetic

events (Morishita and di Luccio, 2011a). The amplification of

NSD1 is found in multiple myeloma, lung cancer,

neuroblastomas and glioblastomas. The amplification of either

NSD1 or NSD2 triggers the cellular transformation.

NSD2/MMSET (multiple myeloma SET) is associated with

tumor aggressiveness or prognosis in most types of cancers

including prostate cancer and multiple myeloma (Asangani et
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al. 2012; Brito et al. 2009; Ezponda et al. 2012; Kim et al.

2008; Klein et al. 2009; Yang et al. 2012b). NSD2 is

overexpressed in solid tumors especially breast cancer, myeloma

and glioblastoma, resulting in aberrantly high global levels of

H3K36me2 (Asangani et al. 2012; Brito et al. 2009; Chesi et

al. 1998; Ezponda et al. 2012; Hudlebusch et al. 2011;

Kassambara et al. 2009; Kim et al. 2008; Klein et al. 2009;

Marango et al. 2008; Martinez-Garcia et al. 2011; Pei et al.

2011; Yang et al. 2012a). Overexpression of NSD2 in prostate

cancer causes epigenetic aberrations leading tothe metastatic

phenotype (Ezponda et al. 2012). NSD3 plays a role in lung

cancer andis found amplified in breast cancer cell lines and

primary breast carcinomas (Angrand et al. 2001; Rosati et al.

2002). NSD2/MMSET is a focal point for therapeutic

interventions against multiple myeloma and especially for

t(4;14) myeloma, which is associated with a significantly worse

prognosis than other biological subgroups (Mirabella et al.

2013). Multiple myeloma is the second most common

hematological malignancy in the United States, after non-Hodgkin

lymphoma.

Chromatin remodelers that include HMTases are becoming a

focal point in cancer drug development (Allen et al. 2013;

Brueckner et al. 2007; Kristensen et al. 2009; Lane and Chabner

2009; Mack 2010; Malmquist et al. 2012; Spannhoff et al.

2009a). Chromatin remodelling inhibitors targeting DNA

methyltransferases (DNMTs), histone methyltransferases and

deacetylases (HDACs) are being pursued for novel cancer

chemotherapies as well as for chemoprevention. Several

DNA-methylation and histone deacetylase inhibitors are

currently in clinical trial stages(Lane and Chabner 2009;

Spannhoff et al. 2009c). The NSDs and specifically NSD2 are

deregulated in several human cancers and are considered as

valuable drug-targets (Asangani et al. 2012; Brito et al. 2009;

Chesi et al. 1998; Ezponda et al. 2012; Hudlebusch et al. 2011;

Kassambara et al. 2009; Kim et al. 2008; Klein et al. 2009;

Marango et al. 2008; Martinez-Garcia et al. 2011; Pei et al.

2011; Yang et al. 2012a). Although the NSD proteins are

instrumental in the development and progression of numerous

cancers, their modi operandi are not yet fully understood.

Inhibitors of HMTases are scarceand very few compounds have

been reported to be selective and specific to their target. Most

HMTase inhibitors are still the early stage of drug-discovery

(Morishita and di Luccio 2011a, b). Notably, GlaxoSmithKline

Inc. and Epizyme Inc. have made significant progress on the

discovery of HMTase DOT1L and EZH2 potent inhibitors

(Knutson et al. 2013; Verma et al. 2012) (Basavapathruni et

al. 2012; Daigle et al. 2013). DOT1L is apart from other

HMTases as it does not contain a SET domain (Min et al.

2003). The HMTase inhibitors, BIX-01294 and BIX-01338,

have been shown to be effective on G9a with an IC50 of 3

M and 5 M, respectively (Spannhoff et al. 2009b). In addition,

Chaetocin inhibits Su(var)3-9 with an IC50 of 0.8 μM (Spannhoff

et al. 2009b). Importantly, Liu et al. completed a seminal work

on the G9a inhibitors such as UNC0224, with an IC50 of 15

nM (Liu et al. 2009). Both Epizyme Inc., GlaxoSmithKline

Inc and research groups on G9a and EZH2 have reported

HMTase inhibitors with IC50 in the low nano molar range.

The catalytic mechanism of lysine-HMTase proceeds through

a linear SN2 nucleophilic attack between the cofactor

S-Adenosylmethionine and the Lysine-NH3 substrate (Morishita

and di Luccio, 2011a). The SAM binds into a small cavity

immediately adjacent to the histone-tail large binding groove

where the lysine substrate extends deep inside a channel at

the interface between both binding areas (Martinez-Garcia et

al. 2011). Previously, we demonstrated that the SET domain

of NSD1 accommodates a 7-amino acid peptide, similarly as

it was further identified in SET8 (Morishita and di Luccio 2011b)

(Kudithipudi et al. 2012). In addition, we demonstrated the

opening mechanism of the SET domain of NSD1 through the

rotation of a small loop at the interface between the SET and

postSET subdomain (Morishita and di Luccio 2011b). This

regulatory-loop is likely to participate in both the substrate

recognition and the catalytic mechanism by acting as a seat

belt for the lysine-substrate. The regulatory-loop sits on top

of the lysine-substrate by strongly anchoring the histone-tail

in the SET domain (Kudithipudi et al. 2012). The histone-tail

binding area involves regions from both the SET and postSET

subdomains (Figure 1). The sequences for the SET domain are

highly conserved amongst the NSDs, thus it is likely that NSD2

and NSD3 proceed through the same mechanism as described

for NSD1 (Figure 2). Notably, the NSDs are apart from other

known HMTases with both NSD2 and NSD3 being close sibling

(Figure 2).2)

In this study, as a first step toward better understanding the

biological functions of NSD2/MMSET, we cloned,

recombinantly expressed and purified the catalytic SET domain

of NSD2. We demonstrate the catalytic activities, in vitro, of

the recombinantly expressed NSD2-SET on H3K36 and H4K20

human histone marks.

Materials and Methods 

Cloning

The SET domain of human NSD2 gene (NSD2-SET, 873 bp,
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Figure 1. Architecture of NSD2/MMSET and model of the opened SET domain with LEM-07

(A) Schematic of the primary structure of NSD2: PWWP domain; PHD zinc fingers domain; SET histone methyl transferase (HMTase) with the preSET and postSET
domains. The regulatory loop closing onto the histone-binding site is indicated in red. (B) Commassie staining on SDS-PAGE gel of the recombinant expressed NSD2-SETafter
purification.

2844-3717 nt; 291 a.a., 948-1239 a.a) was amplified by PCR

using human liver cDNA library (TAKARA, Japan) as template.

The forward and reverse primers are PK162, 5’- GGC-

AGCCATATG(NdeI)CAGGGGGTCAGAGGGATCGGAAG

AG -3’ and PK163, 5’- GAAGCACTCGAG(XhoI)CTCTGACTGCC-

TCTTCCCTTCCCC -3’, respectively. The PCR-amplified

NSD2-SET DNA fragment was digested with NdeI and XhoI
and inserted into the multi cloning site of the protein expression

Intein-tagging vector, pTYB2, (New England Biolabs, USA).

The sequence was verified correct by sequencing (Solgent,

Korea).3)

Protein Expression and Purification

Escherichia coli expression strain, BL21, transformed with

pTYB2 plasmid harbouring NSD2-SET was grown in LB

medium containing 100 μg/mL ampicillin and the expression

of recombinant NSD2-SET was induced with 250 μM isopropyl

1-thio-D-galactopyranoside (IPTG) for 4 h at 15℃. E. coli cells

were harvested and lysed by freeze-and-thaw method and

incubation in buffer A [20 mM Tris (pH 8.0), 500 mM NaCl,

and 0.1 mM EDTA] containing 0.1% Triton X-100 and 10

mM phenylmethanesulfonylfluoride (PMSF) along with 20

cycles of sonication on ice. The resulting cell extract containing

NSD2-SET-Intein-chitin-binding domain fusion protein was

passed over an affinity column of chitin beads and washed

with 100-column volumes of buffer A with 0.1% Triton X-100,

followed by 20-column volumes of buffer A without Triton

X-100. To remove bacterial chaperones bound to the

recombinant proteins, the recombinant NSD2-SET-bound chitin

beads were washed with 10-bed volumes of buffer A containing

10 mM adenosine triphosphate (ATP) and 2.5 mM MgCl2.

Following the removal of bacterial chaperones, the affinity

column was washed with 20-bed volumes of buffer A.

NSD2-SET proteins was cleaved off from the chitin beads by

Curr Res Agric Life Sci (2013) 31(3)：157-164
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Figure 2. Sequence relationship amongst HMTases and between NSDs for the SET domain.

(A)Unrooted phylogenic tree of the protein sequences for the SET domains of human and yeast HMTases. The NSD family is distinct compared to other known
HMTases (in red color). The tree was constructed using the neighbor-joining (NJ) method after a multiple sequence alignment with CLUSTAL 2.1. Hs: Homo sapiens
Sc: Saccharomyces cerevisiae Sp: Saccharomyces pombe
(B)Sequences alignment of the preSET, SET and postSET subdomains of NSD1, NSD2 and NSD3. Boxed in blue are the regions involved in histone-tails binding.
Boxed in red are the regions responsible for theS-Adenosylmethionine. The multiple sequence alignment was done with CLUSTAL 2.1

4)
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incubation in buffer A with 50 mM 2-mercaptoethanol at 4

℃ for 48 h, eluted in buffer A, concentrated using Amicon

Ultra centrifugal filters and then used for methyltransferase

assays. A small portion of purified NSD2-SET was resolved

on a SDS-PAGE. Coomassie staining gel showed soluble and

pure NSD2-SET at around expected molecular weight of 33.2

KDa (Figure 1).
5)

Histone Methyltransferase Assay

Histone Methyltransferase activities of NSD2-SET on H3K36

and H4K20 were measured by colorimetric quantification kits

(Epigentek, USA) following the manufacturer’s protocol.

Briefly, purified recombinant NSDs-CTD (0.2 μg and 2.0 μg)

were incubated with a recombinant histone H3 or H4 (Epigentek,

USA) and a methyl group donor (Adomet) in the strip wells

for 60-90 min at room temperature or 37℃. The specific

antibodies attached to the bottom of the strip wells captured

methylated substrates. Excess of purified NSDs-CTD, histones,

and Adomet was thoroughly washed away and the strip wells

attached with antibody-H3/H4me were incubated with the

labelled detection antibodies for 60 min at 24℃, swirling at

Figure 3. in vitro HMTase activities of NSD2-SET on H3 and H4 substrates

HMTase activities of NSD2-SET on H3K36 abd H4K20 were measured by colorimetric quantification (See Materials and Methods). HMTase assays were done in
duplicate individual experiments and all samples were in duplicate. The results were normalized against controls that do not contain any enzymes (0 g) (NC). Asterisks
indicate P-values;

*
p<0.05,

**
p<0.02,

***
p<0.005,

****
p<0.001

100 rpm in the dark. The colour development step was conducted

after thoroughly washing the wells. The strip wells were

analyzed with an ELISA plate reader at 450 nm. The level

of methylation is proportional to the intensity of the absorbance.

Assays were done in duplicate individual experiments. The

results were normalized against the control that does not contain

any enzymes (NC in Figure 3).

Results and discussion

Histone methyltransferases are emerging as valuable drug targets

for numerous types of cancers where HMTase levels are

increased (Morishita and di Luccio, 2011a, b). NSD2/MMSET

is key molecular target against multiple myeloma that remains

an incurable malignancy in mature (Asangani et al. 2012;

Ezponda et al. 2012; Hudlebusch et al. 2011; Morishita and

di Luccio 2011a, b; Yang et al. 2012b). However, HMTase

inhibitors is limited and only one NSD2 inhibitor, MCTP39,

has been advertised (Arul M. Chinnaiyan 2011; Morishita and

di Luccio 2011a, b; Upadhyay et al. 2012; Yao et al. 2011;

Yuan et al. 2012). The lack of HMTase inhibitors and especially

NSD2 inhibitors is primarily caused by the lack structural

Curr Res Agric Life Sci (2013) 31(3)：157-164



Recombinant Protein Expression and Purification of the Human HMTase MMSET/NSD2162

knowledge on structure-function relationship of HMTase and

NSD2 more specifically.

The structure of NSD2 is unknown and the closest crystal

structure solved is the apo SET domain of NSD1. Following

our previous study on NSD1-SET, we build by homology

modelling, a model of NSD2-SET exploiting the crystal structure

of NSD1-SET as both share 75.9% sequence identity and 90.1%

similarity (Morishita and di Luccio 2011b) (Qiao et al. 2011)

(Figure 1). The quality and accuracy of the set of models were

assessed by the H-factor, a novel quality metric for homology

modelling we recently introduced (di Luccio and Koehl 2011,

2012). Due to the high sequence conservation of the SET domain

between NSD1 and NSD2, the modelling of NSD2-SET

represents an ideal case. 6)

Previously, we studied the movement and role of the regulatory

loop located at the interface between the SET and postSET

domain of NSD1-SET (Figure 1) (Morishita and di Luccio,

2011b). In a closed conformation, the binding of H3 or H4

tails is sterically prevented. However, this is not observed in

H3K9 and H3K4 family of HMTases (Southall et al. 2009;

Wu et al. 2010) (Qiao et al. 2011). We previously identified

that the regulatory loop of NSD1-SET underwent significant

displacements, with a rotation ~45° and a translation ~6Å at

the tip, that open a binding groove largely negatively charged

suitable for the docking of H3 or H4 tails (Figure 1) (Morishita

and di Luccio 2011b). Since both NSD1- and NSD2-SET are

highly related, therefore, it is likely that the opening of

NSD2-SET proceeds the same way as for NSD1-SET. In

addition, as we described for NSD1-SET, NSD2-SET may have

recognition sequence covering at least 7 amino-acids in par

with the H4K20 HMTase SET8 (Kudithipudi et al. 2012).

In this study, as a first step before entering a pipeline for protein

x-ray crystallography, we cloned, recombinantly expressed and

purified the catalytic SET domain of NSD2 (Figure 1). We

cloned the SET domain of human NSD2 into an Escherichia
coli expression vector from the pTYB family where the insert

is fused next to an affinity tag, the intein protein. The pTYB

family of vectors contains an IPTG-inducible T7 promoter and

the protein expression was induced at 15℃ to increase protein

solubility and reduce inclusions body. Following a series of

test-expression, inducing the protein expression at 15℃ for 4

h was found to be optimum for NSD2-SET. Residual protein

chaperones from the Escherichia coli expression strain BL21

strain was found around 72Kda following affinity chromatography

intein-chitin system. Next, the removal of the chaperones was

performed by incubating NSD2-SET-intein on the chitin column,

with a solution of ATP- MgCl2. The ATP- MgCl2 induced the

release of the ATP-dependent E. coli chaperones that were

further eluded on the intein-chitin affinity chromatography. In

the NEB-intein-chitin system, the intein tag is fused to NSD2

through a cysteine residue. β-mercaptoethanol is added to induce

the specific self-cleavage of the intein, which releases the target

protein from the chitin-bound intein tag. The resulting

recombinant NSD2-SET was concentrated to 10 mg/ml using

Amicon Ultra centrifugal filters and then used for

methyltransferase assays. Once resolved on an SDS gel, the

recombinant NSD2-SET is 95-98% pure. The production yield

for NSD2-SET is 0.17 mg of protein per liter of BL21 E. coli
culture. Noteworthy, the current market value for recombinant

NSD2-SET (Reaction Biology Corp. USA) is $550 for 50 μg

of similar purity.

Next, we assayed in vitro NSD2-SET against human H3K36

and H4K20 substrates (Figure 3) as some HMTases such as

SET9 do not retain significant methyltransferase activity in vitro
(Wang et al. 2009). We quantified in vitro the mono (me1),

di (me2) and tri (me3) methylation against the biological histone

targets of NSD2, H3H36 and H4K20 (Figure 3). Using histone

as substrate, recombinant NSD2-SET showed significant

HMTase activities, in par with the catalytic efficiencies

described in vivo (Li et al. 2009). In our hands, recombinant

NSD2-SET is proven to be stable and retained catalytic

properties for an extended period of time when stored at -80℃.

In this study, we achieved the recombinant protein expression

of NSD2-SET with a production yield and purity compatible

with protein crystallization for further entering a pipeline for

protein x-ray crystallography.
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