DOI QR코드

DOI QR Code

A Preliminary Study for Predicting a Damage Range of Pyroclastic Flows, Lahars, and Volcanic Flood caused by Mt. Baekdusan Eruption

백두산 분화에 따른 화쇄류, 화산이류, 화산성 홍수의 피해범위 예측을 위한 예비연구

  • Received : 2013.09.23
  • Accepted : 2013.10.18
  • Published : 2013.10.31

Abstract

Products of the eruption of Mt. Baekdusan are identified as volcanic materials at the estuaries of the Songhuagang river to north, the Dumangang river to east and the Amnokgang river to west. More speficially, pyroclastic flows, lahars and volcanic floods can affect an area of 400km in radius, centering around Lake Cheonji caldera. However, unlike the millenium eruption, the flow situation has been changed. Because multi-purpose dams and reserviors with a combined pondage of mora than 2 billion tons of water have been built in the rivers of which sources are originated from Lake Cheonji caldera. In addition, the flow of fluids expected to take place when the volcano has erupted is thought to be affected by artificial constructions in both direct and indirect ways. This study calculates the direction of fluids flow by using numerical analyses of pyroclastic flows, lahars and volcanic floods that can occur when the volcano of Mt. Baekdusan has erupted. We also estimate the scope of damages by pyroclastic flows, lahars, volcanic flooding caused by the pondage of the dams and water storages in and around Mt. Baekdusan. Pyroclastic flows transported over the steep slopes at the early times of eruptions move over the mountain slopes, affecting airplanes, and lahars due to leaks of Lake Cheonji could reach as far as major rivers and streams near Mt. Baekdusan. Unlike historical accounts, volcanic flood is expected to be limited in its scope of influence to reservoirs bigger than Lake Cheonji in pondage.

백두산 분화의 분출물은 북쪽으로 송화강, 동쪽과 서쪽으로 두만강과 압록강 하구에서 발견되고 있다. 즉 화쇄류, 화산이류, 화산성홍수와 같이 흐름에 수반된 화산물질의 영향범위는 천지를 중심으로 반경 400 km의 범위까지 영향을 미치는 것을 알 수 있다. 그러나 약 1,000년 전 분화 때와는 달리 천지칼데라호의 20억 톤보다 저수량이 큰 담수저장시설이 건설되어 화산분화 시 예상되는 유체의 흐름은 직간접적으로 인공적인 구조물의 영향을 받게 된다. 이 연구는 백두산 화산분화 시 예상되는 화쇄류, 화산이류, 화산성홍수의 수치해석 및 지형자료 분석을 통해 유체의 흐름방향을 산정하고 백두산 일원의 댐과 인공호수의 저수용량에 따른 화쇄류, 화산이류, 화산성홍수의 피해범위를 파악하였다. 분출 초기에 급경사를 따라 이동하는 화쇄류는 산지의 경사면을 따라 이동하여 평탄지까지 영향을 미치며, 천지호의 유출에 의한 화산이류는 주요 하천까지 도달할 수 있다. 화산성홍수의 경우 현존하는 인공적인 담수 저장시설물들로 인하여 천지칼데라호의 담수 유출에 의한 피해 범위는 과거에 비하여 매우 제한적인 범위에 영향을 미칠 것으로 판단된다.

Keywords

References

  1. Alison, H. Graettinger, Vern Manville, and Roger, M. Briggs, 2010, Depositional record of historic lahars in the upper Whangaehu Valley, Mt. Ruapehu, New Zealand: implications for trigger mechanisms, flow dynamics and lahar hazards, Bull Volcano, 72, 279-296. https://doi.org/10.1007/s00445-009-0318-2
  2. Charbonnier, S.J. and Gertisser, R., 2009, Numerical simulations of block-and-ash flows using the Titan2D flow model: examples from the 2006 eruption of Merapi Volcano, Java, Indonesia, Bulletin of Volcanology, 71, 953-959. https://doi.org/10.1007/s00445-009-0299-1
  3. Davila, N., Capra, L., Gavilanes, J.C., Varley, N., Norini, G., and Gomez Vazquez Angel, 2007, Recent lahars at Volcan de Colima (Mexico): drainage variation and spectral classification, Journal of Volcanology and Geothermal Research, 165, 127-141. https://doi.org/10.1016/j.jvolgeores.2007.05.016
  4. Denlinger, R.P. and Iverson, R.M., 2001, Flow of variably fluidized granular material across three-dimensional terrain: 2. Numerical predictions and experimental tests. Journal of Geophysical Research, 106, 553-566. https://doi.org/10.1029/2000JB900330
  5. Horn, S. and Schmincke, H.-U., 2000, Volatile emission during the eruption of Baitoushan volcano (China/North Korea ca. 969 AD), Bulletin of Volcanology, 61, 537-555. https://doi.org/10.1007/s004450050004
  6. Hong, T.K., 2011, We need to quickly assess the potential volcanic eruption at Mt. Baekdusan, Institute for Peace Affairs, United Korea, 329, 34-35.
  7. Hubbard, B.E., Sheridan, M.F., Carrasco-Nunez, G., Diaz-Castellon, R., and Rodriguez, S.R., 2007, Comparative lahar hazard mapping at Volcan Citlaltepetl, Mexico using SRTM, ASTER and DTED-1 digital topographic data. Journal of Volcanology and Geothermal Research, 160, 99-124. https://doi.org/10.1016/j.jvolgeores.2006.09.005
  8. Huggel C., Schneider, D., Miranda, P.J., Delgado Granados, H., and Kaab, A., 2008, Evaluation of ASTER and SRTM DEM data for lahar modeling: a case study on lahars from Popocatepetl Volcano, Mexico. Journal of Volcanology and Geothermal Research, 170, 86-98. https://doi.org/10.1016/j.jvolgeores.2007.09.011
  9. Iverson, R.M., 1997, The physics of debris flows. Reviews of Geophysics. 35, 245-296. https://doi.org/10.1029/97RG00426
  10. Iverson, R.M. and Denlinger, R.P., 2001, Flow of variably fluidized granular material across three-dimensional terrain: 1. Coulomb mixture theory. Journal of Geophysical Research, 106, 537-552. https://doi.org/10.1029/2000JB900329
  11. Iverson, R.M., Schilling, S.P., and Vallance, J.W., 1998, Objective delineation of lahar-hazard zones downstream from volcanoes, Geological Society of America Bulletin, 110, 972-984. https://doi.org/10.1130/0016-7606(1998)110<0972:ODOLIH>2.3.CO;2
  12. Kim, S.W., Choi E.K., Jung S.J., Kim S.H., Lee K.H., and Yun S.H., 2013, Prediction of damage extents of pyroclastic flows, lahars, volcanic flood based on terrain relief", Proc. Korean Society of Hazard Mitigation, 11, 400-405 (in Korean).
  13. Lee, S.H. and Yun S.H., 2011, Impact of meteorological wind fields average on predicting volcanic tephra dispersion of Mt. Baekdu, Journal of Korean Earth Science Society, 32, 360-372 (in Korean). https://doi.org/10.5467/JKESS.2011.32.4.360
  14. Mageney-Castlenau, A., Vilotte, J.P., Bristeau, M.O., Perthame, B., Bouchut, F., Simeoni, C., and Yernemi, S., 2003, Numerical modelling of avalanches based on Saint Venant equations using a kinetic scheme. Journal of Geophysical Research, 108, 2527. 9-1-18 doi:10.1029/2002JB002024
  15. Malin, M.C. and Sheridan, M.F., 1982, Computer-assisted mapping of pyroclastic surges, Science, 217, 637-640. https://doi.org/10.1126/science.217.4560.637
  16. Munoz-Salinas, E., Castillo-Rodriguez, M., Manea. V., Maneab, M. and Palacios, D., (2009), Lahar flow simulations using LAHARZ program: Application for the Popocatepetl volcano, Mexico, Journal of Volcanology and Geothermal Research, 182, 13-22. https://doi.org/10.1016/j.jvolgeores.2009.01.030
  17. Murcia, H.F., Sheridan, M.F., Macias, J.L., and Cortes, G.P., 2010, TITAN2D simulations of pyroclastic flows at Cerro Machin Volcano, Colombia: Hazard implications, Journal of South American Earth Sciences, 29, 161-170. https://doi.org/10.1016/j.jsames.2009.09.005
  18. Oramas-Dorta, D., Cole, P.D., Wadge, G., Alvarado, G.E., and Soto, G.J, 2012, Pyroclastic flow hazard at Arenal volcano, Costa Rica, Journal of Volcanology and Geothermal Research, 247-248, 74-92. https://doi.org/10.1016/j.jvolgeores.2012.07.015
  19. Pierson, T.C. and Scott, K.M., 1985, Downstream dilution of a lahar: transition from debris flow to hyperconcentrated streamflow, Water Resources Research, 21, 1511-1524. https://doi.org/10.1029/WR021i010p01511
  20. Pitman, E.B., Patra, A., Bauer, A., Nichita, C., Sheridan, M.F. and Bursik, M., 2003, Computing debris flows. Physics of Fluids 15, 3638-3646. https://doi.org/10.1063/1.1614253
  21. Robinson, J.E. and Clynne, M.A., 2010, Modeling lahar hazard zones for eruption-generated lahars from Lassen Peak, California, American Geophysical Union, Fall Meeting 2010, abstract #V11C-2300.
  22. Rupp, B., Bursik, M., Namikawa, L., Webb, A., Patra, A.K., Saucedo, R., Macias, J.L., and Renschler, C., 2006, Computational modeling of the 1991 block and ash flows at Colima volcano, Mexico. In: Siebe, C., Macias, J.L., Aguirre-Diaz, G.J. (eds.), Neogene-. Quaternary Continental Margin Volcanism: A Perspective from Mexico: Geological Society of America Special Paper, 402, 237-252 (Penrose Conference Series).
  23. Savage, S.B. and Hutter, K., 1989, The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics. 199, 177-215. https://doi.org/10.1017/S0022112089000340
  24. Schneider, D., Delgado Granados, H., Huggel, C., and Kaab, A., 2006, Modeling potential laharic hazards related to ice-melting in case of unrest of Iztaccihuatl volcano (Central Mexico), European Geoscience Union, General Assembly 2006, Vienna, Austria, April 2-7, 2006.
  25. Scott, K.M., 1988, Origins, behavior, and sedimentology of lahars and lahar-runout flows in the Toutle-Cowlitz system, U.S. Geological Survey professional paper, 1447-A, 1-74.
  26. Sheridan, M.F., 1979, Emplacement of pyroclastic flows-A review, in C. E. Chapin et al. (eds.), Ash Flow Tuffs, Geological Society of America, Special Paper, 180, 125-136.
  27. Sheridan, M.F., Stinton, A.J., Patra, A.K., Bauer, A.C., Nichita, C.C., and Pitman, E.B., 2005, Evaluating TITAN2D Mass-Flow Model Using the 1963 Little Tahoma Peak avalanches, Mount Rainier, Washington, Journal of Volcanology and Geothermal Research, 139, 89-102. https://doi.org/10.1016/j.jvolgeores.2004.06.011
  28. Sigurdsson, H. and Carey, S., 1989, Plinian and coignimbrite tephra fall from the 1815 eruption of Tambora Volcano, Bulletin of Volcanology, 51, 243-270. https://doi.org/10.1007/BF01073515
  29. Simkin, T. and Siebert, L., 1994, Volcanoes of the world geoscience press, Washington DC, USA, 379.
  30. Smith, G.A., 1986, Coarse-grained nonmarine volcaniclastic sediment: Terminology and depositional process, Bulletin of Geological Society of America, 97, 1-10. https://doi.org/10.1130/0016-7606(1986)97<1:CNVSTA>2.0.CO;2
  31. Soh, W.J. and Yun S.H., 1999, A review of the holocene major eruption of Mt. Paektu volcano, Journal of Korean Earth Science Society, 20, 534-543(in Korean).
  32. Soh, W.J., 2010, Secret of Mt. Baekdusan outbreaks, Science Books(in Korean).
  33. Sulpizio, R., Capra, L., Sarocchi, D., Saucedo, R., Gavilanes-Ruiz, J.C., and Varley, N.R., 2010, Predicting the block-and-ash flow inundation areas at Volcan de Colima (Colima,Mexico) based on the present day (February 2010) status, Journal of Volcanology and Geothermal Research, 193, 49-66. https://doi.org/10.1016/j.jvolgeores.2010.03.007
  34. Wei, H., Sparks R.S.J., Liu R., Fan Q., Wang Y., Hong H., Zhang H., Chen H., Jiang C., Dong J., Zheng Y., and Pan Y., 2003, Three active volcanoes in China and their hazards, Journal of Asian Earth Sciences, 21(5), 515-526. https://doi.org/10.1016/S1367-9120(02)00081-0
  35. Wei, H., Taniguchi, H., and Liu, R., 2002, Chinese myths and legends for Tianchi Volcano eruptions, Northeast Asian Studies, 6, 191-200.
  36. Yuan, W., Jiandong X., and Bo P., 2012, Define the energy cone threshold and extent of Tianchi volcano, Science China Earth Sciences (in Pressing), 23, 768-774.
  37. Yun, S.H. and Cui Z.X., 1996, Historical eruption records on the Cheonji caldera volcano in the Mt. Paektu, Journal of Korean Earth Sicence Society, 17, 376-382 (in Korean).
  38. Yun, S.H., 2010, Day of Mt. Baekdusan outbreaks, Haemaji (in Korean).
  39. http://www.gmfg.buffalo.edu/software.php (July 13th 2013)
  40. http://zh.wikipedia.org/zh/%E4%B8%AD%E5%9B%BD%E5%A4%A7%E5%9E%8B%E6%B0%B4%E5%BA%93%E5%88%97%E8%A1%A8 (July 13th 2013)
  41. http://volcanoes.usgs.gov/vdap/images/merapi/index.php (July 13th 2013)
  42. http://www.volcano.si.edu/volcano.cfm?vn=264040 (July 13th 2013)

Cited by

  1. Distribution of Pyroclastic Density Currents Determined by Numerical Model at Mt. Baekdu Volcano vol.23, pp.4, 2014, https://doi.org/10.7854/JPSK.2014.23.4.351