DOI QR코드

DOI QR Code

The Effect of Silk Fibroin Particles Coated with Hydroxyapatites on Bone Regeneration in the Rat Calvarial Defect Model

백서 두개골 결손모델에서 하이드록시아파타이트 입자로 입혀진 실크단백이 골재생에 미치는 영향

  • Seok, Hyun (Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University) ;
  • Park, Young-Tae (Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University) ;
  • Kim, Seong-Gon (Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University) ;
  • Jin, Hyung-Joon (Department of Polymer Science and Engineering, Inha University)
  • 석현 (강릉원주대학교 치과대학 구강악안면외과학교실) ;
  • 박용태 (강릉원주대학교 치과대학 구강악안면외과학교실) ;
  • 김성곤 (강릉원주대학교 치과대학 구강악안면외과학교실) ;
  • 진형준 (인하대학교 고분자신소재공학과)
  • Received : 2012.12.19
  • Accepted : 2013.01.24
  • Published : 2013.01.31

Abstract

Purpose: This study evaluated the capability of bone formation of silk fibroin particles coated with hydroxyapatites (HA/SF), as bone graft material when put into the calvarial defect of rats. Methods: Twenty Sprague Dawley rats were used for this study and round shaped defects were formed in the center of parietal bones (diameter: 8.0 mm). The defect was filled with (1) HA/SF (experimental group), or (2) left as a vacant space (control group). The animals were sacrificed at 4 or 8 weeks, postoperatively. The specimens were decalcified and stained with Masson's trichrome for histomorphometric analysis. Results: The average of new bone formation was $33.18{\pm}3.10%$ in the experimental group and $20.49{\pm}5.79%$ in the control group at 4 weeks postoperatively. That was $42.52{\pm}7.74%$ in the experimental group and $25.50{\pm}7.31%$ in the control group at 8 weeks postoperatively. The difference between the groups was significantly higher at both 4 weeks and 8 weeks postoperatively (P<0.05). Conclusion: The rat calvarial defect was successfully repaired by HA/SF graft. The HA/SF graft showed more new bone formation compared with the unfilled control.

Keywords

References

  1. Bianchi B, Ferri A, Ferrari S, Copelli C, Boni P, Sesenna E. Iliac crest free flap for maxillary reconstruction. J Oral Maxillofac Surg 2010;68:2706-13. https://doi.org/10.1016/j.joms.2010.01.008
  2. Laurie SW, Kaban LB, Mulliken JB, Murray JE. Donor-site morbidity after harvesting rib and iliac bone. Plast Reconstr Surg 1984;73:933-8. https://doi.org/10.1097/00006534-198406000-00014
  3. Friedlaender GE. Immune responses to osteochondral allografts. Current knowledge and future directions. Clin Orthop Relat Res 1983;174:58-68.
  4. Carlson ER, Marx RE, Buck BE. The potential for HIV transmission through allogeneic bone. A review of risks and safety. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1995;80:17-23. https://doi.org/10.1016/S1079-2104(95)80010-7
  5. Bucholz RW, Carlton A, Holmes RE. Hydroxyapatite and tricalcium phosphate bone graft substitutes. Orthop Clin North Am 1987;18:323-34.
  6. Radin SR, Ducheyne P. Effect of bioactive ceramic composition and structure on in vitro behavior. III. Porous versus dense ceramics. J Biomed Mater Res 1994;28:1303-9. https://doi.org/10.1002/jbm.820281108
  7. Valentini P, Abensur D. Maxillary sinus floor elevation for implant placement with demineralized freeze-dried bone and bovine bone (Bio-Oss): a clinical study of 20 patients. Int J Periodontics Restorative Dent 1997;17:232-41.
  8. Barakat NAM, Khil MS, Omran A, Sheikh FA, Kim HY. Extraction of pure natural hydroxyapatite from the bovine bones bio waste by three different methods. J Mater Process Technol 2009;209:3408-15. https://doi.org/10.1016/j.jmatprotec.2008.07.040
  9. Sivakumar M, Kumar TS, Shantha KL, Rao KP. Development of hydroxyapatite derived from Indian coral. Biomaterials 1996;17:1709-14. https://doi.org/10.1016/0142-9612(96)87651-4
  10. Piattelli A, Scarano A, Corigliano M, Piattelli M. Comparison of bone regeneration with the use of mineralized and demineralized freeze-dried bone allografts: a histological and histochemical study in man. Biomaterials 1996;17:1127-31. https://doi.org/10.1016/0142-9612(96)85915-1
  11. Neumann M, Epple M. Composites of calcium phosphate and polymers as bone substitution materials. Eur J Trauma 2006; 32:125-31. https://doi.org/10.1007/s00068-006-6044-y
  12. Chang MC, Ko CC, Douglas WH. Preparation of hydroxyapatite- gelatin nanocomposite. Biomaterials 2003;24:2853-62. https://doi.org/10.1016/S0142-9612(03)00115-7
  13. Kikuchi M, Ikoma T, Itoh S, et al. Biomimetic synthesis of bone-like nanocomposites using the self-organization mechanism of hydroxyapatite and collagen. Composites Sci Technol 2004;64:819-25. https://doi.org/10.1016/j.compscitech.2003.09.002
  14. Wan Y, Hong L, Jia S, et al. Synthesis and characterization of hydroxyapatite-bacterial cellulose nanocomposites. Composites Sci Technol 2006;66:1825-32. https://doi.org/10.1016/j.compscitech.2005.11.027
  15. Cao Y, Wang B. Biodegradation of silk biomaterials. Int J Mol Sci 2009;10:1514-24. https://doi.org/10.3390/ijms10041514
  16. Aramwit P, Kanokpanont S, De-Eknamkul W, Srichana T. Monitoring of inflammatory mediators induced by silk sericin. J Biosci Bioeng 2009;107:556-61. https://doi.org/10.1016/j.jbiosc.2008.12.012
  17. Santin M, Motta A, Freddi G, Cannas M. In vitro evaluation of the inflammatory potential of the silk fibroin. J Biomed Mater Res 1999;46:382-9. https://doi.org/10.1002/(SICI)1097-4636(19990905)46:3<382::AID-JBM11>3.0.CO;2-R
  18. Dal Pra I, Freddi G, Minic J, Chiarini A, Armato U. De novo engineering of reticular connective tissue in vivo by silk fibroin nonwoven materials. Biomaterials 2005;26:1987-99. https://doi.org/10.1016/j.biomaterials.2004.06.036
  19. Um IC, Kweon HY, Park YH, Hudson S. Structural characteristics and properties of the regenerated silk fibroin prepared from formic acid. Int J Biol Macromol 2001;29:91-7. https://doi.org/10.1016/S0141-8130(01)00159-3
  20. Minoura N, Tsukada M, Nagura M. Physico-chemical properties of silk fibroin membrane as a biomaterial. Biomaterials 1990;11:430-4. https://doi.org/10.1016/0142-9612(90)90100-5
  21. Gosline JM, DeMont ME, Denny MW. The structure and properties of spider silk. Endeavour 1986;10:37-43. https://doi.org/10.1016/0160-9327(86)90049-9
  22. Kim UJ, Park J, Li C, Jin HJ, Valluzzi R, Kaplan DL. Structure and properties of silk hydrogels. Biomacromolecules 2004;5:786-92. https://doi.org/10.1021/bm0345460
  23. Arai T, Freddi G, Innocenti R, Tsukada M. Biodegradation of Bombyx mori silk fibroin fibers and films. J Appl Polym Sci 2004;91:2383-90. https://doi.org/10.1002/app.13393
  24. Sofia S, McCarthy MB, Gronowicz G, Kaplan DL. Functionalized silk-based biomaterials for bone formation. J Biomed Mater Res 2001;54:139-48. https://doi.org/10.1002/1097-4636(200101)54:1<139::AID-JBM17>3.0.CO;2-7
  25. Song JY, Kim SG, Lee JW, et al. Accelerated healing with the use of a silk fibroin membrane for the guided bone regeneration technique. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2011;112:e26-33.
  26. Lee SW, Park YT, Kim SG, Kweon HY, Jo YY, Lee HS. The effects of tetracycline-loaded silk fibroin membrane on guided bone regeneration in a rabbit calvarial defect model. J Korean Assoc Maxillofac Plast Reconstr Surg 2012;34:293-8.
  27. Wang J, Yu F, Qu L, Meng X, Wen G. Study of synthesis of nano-hydroxyapatite using a silk fibroin template. Biomed Mater 2010;5:041002. https://doi.org/10.1088/1748-6041/5/4/041002
  28. von Arx T, Kurt B. Implant placement and simultaneous peri-implant bone grafting using a micro titanium mesh for graft stabilization. Int J Periodontics Restorative Dent 1998;18:117-27.
  29. Kye JY, Kim SG, Kim MK, et al. Electrospun silk nano-fiber combined with nano-hydoxyapatite graft for the rabbit calvarial model. J Korean Assoc Maxillofac Plast Reconstr Surg 2010;32:293-8.
  30. Park YT, Kwon KJ, Park YW, et al. The effect of silk fibroin/nano-hydroxyapatite/corn starch composite porous scaffold on bone regeneration in the rabbit calvarial defect model. J Korean Assoc Maxillofac Plast Reconstr Surg 2011;33:459-66.
  31. Song JY, Kweon H, Kwon KJ, Park YW, Kim SG. The bone regenerative effect of silk fibroin mixed with platelet-rich fibrin (PRF) in the calvaria defect of rabbit. J Korean Assoc Oral Maxillofac Surg 2010;36:250-4. https://doi.org/10.5125/jkaoms.2010.36.4.250
  32. Jang ES, Lee HS, Lee HS, et al. Effect of combination graft of choukroun's platelet-rich-fibrin with silk fibroin powder in the peri-implant defects. J Korean Assoc Maxillofac Plast Reconstr Surg 2011;33:103-11.
  33. Choi Y, Cho SY, Park DJ, Park HH, Heo S, Jin HJ. Silk fibroin particles as templates for mineralization of calcium-deficient hydroxyapatite. J Biomed Mater Res B Appl Biomater 2012; 100:2029-34.

Cited by

  1. Membranes for the Guided Bone Regeneration vol.36, pp.6, 2014, https://doi.org/10.14402/jkamprs.2014.36.6.239
  2. Silk Fibroin-Alginate-Hydroxyapatite Composite Particles in Bone Tissue Engineering Applications In Vivo vol.18, pp.4, 2017, https://doi.org/10.3390/ijms18040858