DOI QR코드

DOI QR Code

초기 개체군 밀도가 포식자-피식자 생태계 안정성에 미치는 영향

Exploring the Stability of Predator-Prey Ecosystem in Response to Initial Population Density

  • 조정희 (국가수리과학연구소 수리모델부) ;
  • 이상희 (국가수리과학연구소 수리모델부)
  • 투고 : 2012.12.20
  • 심사 : 2013.07.05
  • 발행 : 2013.09.30

초록

생태계는 다양한 환경 내에 다양한 생물종이 서로 상호작용하고 있는 복잡계이다. 이들 상호작용은 계층적 먹이그물 구조를 이루고 있는데, 많은 경우, 포식자-피식자-식물의 관계를 보여준다. 포식자-피식자 경쟁관계는 시공간적으로 일어나는 현상이기 때문에, 초기시점에서의 개체들 분포와 밀도가 어떠한가는 매우 중요한 정보를 담고 있다. 본 연구에서는, 이들 세 단계 계층구조의 생태계를 간단한 격자 모델로 구성하고 이 모델을 사용하여 각 종의 초기 개체군 밀도가 변함에 따라 생태계 안정성이 어떻게 변하는지를 연구하였다. 격자공간은 $L{\times}L$ 크기의 L(=100) 사각격자로 구성되었다. 식물의 초기 밀도는 0.2로 고정하였다. 시뮬레이션 결과는, 포식자의 밀도가 0.4이하, 피식자의 밀도가 0.5이하일 때 두 종이 공존하는 것을 보여 주었으며, 포식자 밀도가 0.5이상, 피식자 밀도가 0.6 이상의 조건에서는 두 종이 멸종하는 것을 보여 주었다. 공존과 멸종의 두 상태가 접하는 영역의 조건에서는 확률적으로 공존하기도하고 멸종하기도 하는 비선형성이 강한 행동을 보여 주었다. 본 연구를 통해 초기종의 밀도가 생태계 안정성에 매우 중요한 역할을 한다는 것을 알 수 있었다.

The ecosystem is the complex system consisting of various biotic and abiotic factors and the factors interact with each other in the hierarchical predator-prey relationship. Since the competitive relation spatiotemporally occurs, the initial state of population density and species distribution are likely to play an important role in the stability of the ecosystem. In the present study, we constructed a lattice model to simulate the three-trophic ecosystem (predatorprey- plant) and using the model, explored how the ecosystem stability is affected by the initial density. The size of lattice space was $L{\times}L$, (L=100) with periodic boundary condition. The initial density of the plant was arbitrarily set as the value of 0.2. The simulation result showed that predator and prey coexist when the density of predator is less than or equal to 0.4 and the density of prey is less than or equal to 0.5. On the other hand, when the predator density is more than or equal to 0.5 and the density of prey is more than or equal to 0.6, both of predator and prey were extinct. In addition, we found that the strong nonlinearity in the interaction between species was observed in the border area between the coexistence and extinction in the species density space.

키워드

참고문헌

  1. Bazykin, A.D., "Nonlinear dynamics of interacting populations," WorldScientific, Singapore. 1998.
  2. Leslie, P.H., "Some furthers notes on the use of matrices in population mathematics," Biometrica. vol. 35, pp. 213-245, 1948. https://doi.org/10.1093/biomet/35.3-4.213
  3. Arditi, R., Abillon, J.M. and DaSilva, J.V., "A predatorprey model with satiation and intraspecific competition," Ecol. Model. vol. 5, pp. 173-191, 1978. https://doi.org/10.1016/0304-3800(78)90019-4
  4. Berryman, A.A., "The biological control paradox," Trends Ecol Evol. vol. 6, pp. 32, 1991. https://doi.org/10.1016/0169-5347(91)90148-Q
  5. Arditi, R. and Ginzburg, L.R., "Coupling in predatorprey dynamics: ratio-dependent," J. Theor. Biol. vol. 139, pp. 311-326, 1989. https://doi.org/10.1016/S0022-5193(89)80211-5
  6. Gutierrez, A.P., "Physiological basis of ratio-dependent predator-prey theory: the metabolic pool model as a paradigm," Ecology. vol. 73, pp. 1552-1563, 1992. https://doi.org/10.2307/1940008
  7. Kareiva, P., "Population Dynamics in Spatially Complex Environments: Theory and Data [and Discussion],"Phil. Trans. Soc. Lond. B. vol. 330, pp. 175-190, 1990. https://doi.org/10.1098/rstb.1990.0191
  8. Hanski, I., and Gyllenberg, M., "Two general metapopulation models and the core-satellite species hypothesis," Am. Natur. vol. 142, pp. 17-41, 1993. https://doi.org/10.1086/285527
  9. Ovaskainen, O., Sato, K., Bascompte, J., and Hanski, I., "Metapopulation models for extinction threshold in spatially correlated landscape," J. Theoret. Biol. vol. 215, pp. 95-108, 2002. https://doi.org/10.1006/jtbi.2001.2502
  10. Ovaskainen, O., and Hanski, I., "How much does an individual habitat fragment contribute to metapopulation dynamics and persistence?," Theor. Popul. Biolo. vol. 64, pp. 481-495, 2003. https://doi.org/10.1016/S0040-5809(03)00102-3
  11. Peterson, C.H., "experimental tests of the importance of prey size, prey density, and seagrass cover," Mar. Biol. vol. 66, pp. 159-170, 1982. https://doi.org/10.1007/BF00397189
  12. Sih, A., Crowley, P., McPeek, M., Petranka, J., and Strohmeier, K., "Predation, competition and prey communities: a review of field experiments," Annu. Rev. Ecol. Syst. vol. 16, pp. 269-311, 1985. https://doi.org/10.1146/annurev.es.16.110185.001413
  13. Schmitz, O.J., Hamback, P.A., Beckerman, A.P., "Trophic cascades in terrestrial systems: a review of the effects of top carnivore removals on plants," Am. Nat. vol. 155, pp. 141-153, 2000. https://doi.org/10.1086/303311
  14. Lee, S.H., "Effects of the heterogeneous landscape on a predator-prey system," Physica A. vol. 389, pp. 259-264, 2010. https://doi.org/10.1016/j.physa.2009.09.024
  15. Lee, S.H., "Effects of uniform rotational flow on predatorprey system," Physica A. vol. 391, pp. 6008-6015, 2012. https://doi.org/10.1016/j.physa.2012.07.031
  16. Szwabinski, J., Pekalski, A., "Effects of random habitat destruction in a predator-prey model,"Physica A. vol. 360, pp. 59-70, 2006. https://doi.org/10.1016/j.physa.2005.05.079
  17. Trokan, K., Pekalski, A., "Dynamics of a predator-prey model in a habitat with cover,"Physica A. vol. 330, pp. 130-138, 2003. https://doi.org/10.1016/j.physa.2003.08.009
  18. Shirts, R.B., Burt, S.R., Johnson, A.M., "Periodic boundary condition induced breakdown of the equipartition principle and other kinetic effects of finite sample size in classical hard-sphere molecular dynamics simulation," J Chem Phys. vol. 125(16):164102, 2006. https://doi.org/10.1063/1.2359432