DOI QR코드

DOI QR Code

A Framework for 3D Hand Gesture Design and Modeling

삼차원 핸드 제스쳐 디자인 및 모델링 프레임워크

  • Kwon, Doo-Young (Department of New Media, Korean German Institute of Technology)
  • 권두영 (한독미디어대학원대학교 뉴미디어학부)
  • Received : 2013.09.16
  • Accepted : 2013.10.10
  • Published : 2013.10.31

Abstract

We present a framework for 3D hand gesture design and modeling. We adapted two different pattern matching techniques, Dynamic Time Warping (DTW) and Hidden Markov Models (HMMs), to support the registration and evaluation of 3D hand gestures as well as their recognition. One key ingredient of our framework is a concept for the convenient gesture design and registration using HMMs. DTW is used to recognize hand gestures with a limited training data, and evaluate how the performed gesture is similar to its template gesture. We facilitate the use of visual sensors and body sensors for capturing both locative and inertial gesture information. In our experimental evaluation, we designed 18 example hand gestures and analyzed the performance of recognition methods and gesture features under various conditions. We discuss the variability between users in gesture performance.

본 논문에서는 삼차원 핸드 제스쳐 디자인 및 모델링을 위한 프레임워크를 기술한다. 동작 인식, 평가, 등록을 지원하기위해 동적시간정합(Dynamic Time Warping, 이하 DTW)과 은닉마코브모델 (Hidden Markov Mode, 이하 HMM)을 활용 하였다. HMM은 제스쳐 인식에 활용되며 또한 제스쳐 디자인과 등록 과정에 활용된다. DTW은 HMM 훈련 데이터가 부족한 경우 제스쳐 인식에 활용되고, 수행된 동작이 기준 동작의 차이를 평가하는 데에 활용된다. 동작 움직임에 나타나는 위치 정보와 관성 정보를 모두 획득하기 위해 바디센서와 시각센서를 혼합하여 동작을 감지하였다. 18개의 예제 손동작을 디자인하고 다양한 상황에서 제안된 기법을 테스트하였다. 또한 제스쳐 수행시 나타나는 사용자간 다양성에 대해 토론한다.

Keywords

References

  1. D. Y. Kwon and M. Gross. Combining body sensors and visual sensors for motion training. In Proceedings of ACM SIGCHI ACE'05, pages 94-101. 2005. DOI: http://dx.doi.org/10.1145/1178477.1178490
  2. S. T., Auxier, J., Ashbrook: The gesture pendant: A self-illuminating, wearable, infrared computer vision system for home automation control and medical monitoring. In Proceedings of ISWC 2000. DOI: http://dx.doi.org/10.1109/ISWC.2000.888469
  3. X. Cas, R. Balakrishnan: Visionwand: interaction techniques for large displays using a passive wand tracked in 3d. In Proceedings of UIST '03, pp. 173- 182. 2003. DOI: http://dx.doi.org/10.1145/964696.964716
  4. A. Wilson., S. Shafer.: Xwand: Ui for intelligent spaces. In Proceedings of ACM CHI'03, pp. 545-522. 2003. DOI: http://dx.doi.org/10.1145/642611.642706
  5. J. Rekimoto: Gesturewrist and gesturepad: Unobtrusive wearable interaction devices. In Proceedings of the ISWC '01, p. 21. 2001. DOI: http://dx.doi.org/10.1109/ISWC.2001.962092
  6. P. Keir, J. Payne, J. Elgoyhen, M. Horner, M. Naef, and P. Anderson. Gesture-recognition with nonreferenced tracking. In Proceedings of the 3D User Interfaces (3DUI'06), 2006. DOI: http://dx.doi.org/10.1109/VR.2006.64
  7. E. Tuulari and A. Ylisaukko-oja. Soapbox: A platform for ubiquitous computing research and applications. In Proceedings of Pervasive '02, pages 125-138, 2002. DOI: http://dx.doi.org/10.1007/3-540-45866-2_11
  8. K. Tsukada and M. Yasamura. Ubi-finger: Gesture input device for mobile use. In Proceedings of APCHI '02, pages 388-400, 2002.
  9. J.K. Perng, B. Fisher, and S. Hollar et al. Acceleration sensing glove. In Proceedings of The Third International Symposium on Wearable Computers, pages 178-179, 1999. DOI: http://dx.doi.org/10.1109/ISWC.1999.806717
  10. Z.Zhang.. Flexible camera calibration by viewing a plane from unknown orientations. In Proceedings of the 7th International Conference on Computer Vision 1999, pages 662-673, 1999 DOI: http://dx.doi.org/10.1109/ICCV.1999.791289
  11. OpenSource Computer Vision Library. Intel Corp. , http://www.intel.com.
  12. L. Rabiner. A tutorial on hidden markov models and selected applications in speech recognition. In Proceedings of the IEEE, volume 77, pages 257-286, Feburuary 1989. DOI: http://dx.doi.org/10.1109/5.18626
  13. M. H. Ko, G. West, S. Venkatesh, and M. Kumar. Online context recognition in multisensor systems using dynamic time warping. In Proceedings of ISSNIP '05, 2005.
  14. E. Keogh and M. Pazzani. Derivative dynamic time warping. In Proceedings in First SIAM International Conference on Data Mining, 2001. DOI: http://dx.doi.org/10.1109/ISSNIP.2005.1595593