DOI QR코드

DOI QR Code

액체 추진기관 기술 동향

Review of the Liquid Propulsion Technology

  • Lee, Tae Ho (ReSeat Program, Korea Institute of Science and Technology Information) ;
  • Lee, Chang-Hoan (Informetrics Research Team, Korea Institute of Science and Technology Information)
  • 투고 : 2013.06.06
  • 심사 : 2013.09.18
  • 발행 : 2013.10.01

초록

액체 추진제 로켓이 큰 추력과 특히 무게 대비 추력 때문에 세계적으로 널리 사용되고 있다. 액체 추진기관은 기계적으로 복잡한 시스템이지만 발사 성공률은 고체 추진기관과 거의 비슷하게 나타나고 있다. 일반적으로 액체추진기관은 성숙된 기술이지만, 우주 탐험에 대한 새로운 관심은, 추력과 수명요구의 다양성에 따른 생산과 사용의 간편성, 그리고 설계 마진 등을 갖는 새로운 엔진 종류의 개발을 필요로 하고 있다.

Liquid-propellant rocket engines are widely used all over the world, thanks to their high performances thrust, in particular high thrust-to-weight ratio. The sucess rate of the launching of the liquid propulsion is similar to the solid one even though it has more complex mechanical system. In general, liquid propulsion is seemed as a mature technology, the requirements of a renewed interest for space exploration has led to the development of a family of new engines, with more design margins, simpler to use and to produce associated with a wide variety of thrust and life requirements.

키워드

참고문헌

  1. Lee, T.H., "Review of the Solid Propulsion Trend in the Launch Vehicle(1)," Journal of the Korean Society Propulsion Engineers, Vol. 6, No. 5, pp. 97-107, 2012. https://doi.org/10.6108/KSPE.2012.16.5.097
  2. Madonald, A.J., "Solid Rocket Motor Failure," AIAA/SRTC 2008 short course advanced solid rockets, 44th AIAA Joint Propulsion Conference, Hartfort, CT., 2008.
  3. Leonard, B. et al, "Liquid propulsion considerations in projecting launch vehicle failure probabilities," AIAA-92-1334, March, 1992.
  4. Sutton, G.P. and Oscar, B., Rocket Propulsion Elements, 7th ed., John Wiley & Sons Inc., 2001.
  5. "Liquid rocket system," retrieved April 7 2013 from http://www.lr.tudelft.nl/en/ organisation/departments-and-chairs/space-e ngineering/space-systems-engineering/expert ise-areas/space-propulsion/propulsion-optio ns/chemical-rockets/liquid/
  6. Edwards, T., "Liquid Fuels and Propellants for Aerospace Propulsion: 1903-2003," Journal of propulsion and power, Vol. 19, No. 6, 2003.
  7. Haidn, O.J., "Advanced Rocket Engines," Institute of Space Propulsion, German Aerospace Center (DLR) 74239 Lampoldshausen, Germany, 2013.
  8. "Rocket & Space Technology," retrieved April 7 2013 from http://www.braeunig.us /space/propel.htm
  9. Burkhardt, H. et al, "Comparative study of kerosine and methane propellant engines for reusable liquid booster stages," 4th International Conference on Launcher Technology "Space Launcher Liquid Propulsion," 3-6 December 2002 - Liege (Belgium), 2002.
  10. Genta, G. et al, "Preliminary assessment of a small robotic rover for Titan exploration observation," Acta Astronautica, 68, pp. 556-566, 2011. https://doi.org/10.1016/j.actaastro.2010.02.016
  11. Caisso, P. et al "A liquid propulsion panorama," Acta Astronautica, Vol. 65, Issues 11-12, pp. 1723-1737, December 2009. https://doi.org/10.1016/j.actaastro.2009.04.020
  12. Schweikle, D. and Simpson, J., "The expanded delta launch vehicle family with a status on the new Delta IV," Acta Astronautica, Vol. 48, Issues 5-12, pp. 451-459, March-June 2001. https://doi.org/10.1016/S0094-5765(01)00065-0
  13. Grosdemange, H. et al, "The SEPR 844 Reusable liquid Rocket Engine for Mirage Combat Aircraft," AlAA 90-1835, AIAA 26th Joint Propulsion Conference, July 16-18, Orlando, FL., 1990.
  14. Schmitt, D. et al, "59th International Astronautical Congress-Glasgow 2008: Session D2.1.6-Launch vehicles in service or in development, Ariane 5-Program status," Acta Astronautica, Vol. 66, Issues. 5-6, pp. 871-882, 2010. https://doi.org/10.1016/j.actaastro.2009.09.007
  15. "Ariane 5," retrieved April 10 2013 from http://en.wikipedia.org/wiki/Ariane_5"
  16. Suresh, B.N. "Roadmap of Indian space transportation," Acta Astronautica, Vol. 64, pp. 395-402, 2009. https://doi.org/10.1016/j.actaastro.2008.09.009
  17. Vassant, G. an Suresh, B.N., "History of recketry in India," Acta astronautica, Vol. 65, pp. 1515-1519, 2009. https://doi.org/10.1016/j.actaastro.2009.03.083
  18. "Snecma Space Propulsion Business," Snecma Safran Group, ESTEC, 2006.
  19. Letourneur, Y. et al, "Status of next generation expendable launchers concepts within the FLPP program," Acta Astronautica, Vol. 66, pp. 1404-1411, 2010. https://doi.org/10.1016/j.actaastro.2009.10.031
  20. Sumrall, J.P. and Creech, S., "Update on the Ares V to support heavy lift for U. S. space exploration policy," Acta Astronautica, Vol. 66, pp. 1133-1145, 2010. https://doi.org/10.1016/j.actaastro.2009.10.002
  21. Stanley, D., "A space transportation architecture for the future," Acta astronautica, Vol. 47, pp. 265-274, 2000. https://doi.org/10.1016/S0094-5765(00)00066-7
  22. Mankins, J.C., "Highly reusable space transportation," Acta astronautica, Vol. 51, pp. 727-742, 2002. https://doi.org/10.1016/S0094-5765(02)00020-6
  23. Conley, D. et al, "Evolved expendable launch vehicle," Acta astronautica, Vol. 53, pp. 577-584, 2003. https://doi.org/10.1016/S0094-5765(03)80019-X
  24. Elliot, J. and Alkalai, L., "A low cost concept enabling multi-lander lunar science and exploration mission," Acta astronautica, Vol. 66, pp. 269-278, 2010. https://doi.org/10.1016/j.actaastro.2009.06.010
  25. Grimard, M., "Will the US remain the leader of human space exploration? A comparative assessment of space exploration policies", Acta Astronautica, Vol. 75, pp. 1-14, 2012. https://doi.org/10.1016/j.actaastro.2012.01.007
  26. Cremic,, T. et al, "NASA's in space propulsion technology project overview and mission applicability," NASA Glenn Research Center, IEEEAC p. 1481, 2007.
  27. Lawrence G., "Development and Characteristics of the Russian/American Rd-180 Rocker Engine," retrieved April 10 2013 from http://www.pwrengineering.com /dataresources/rd-180-pres-052002.pdf
  28. Ellis, R.A., "An example of successful international cooperation in rocket motor technology," Acta Astronautica, Vol. 51, pp. 47-56, 2012, pp. 1-14, 2012.
  29. Glaittili, S.R., "IHPRPT phase 1 solid booster demonstrator, success story," AIAA pp. 2001-3451, 2001.
  30. "Vega Rocket," retrieved April 10 2013 from http://www.esa.int/Our_Activities/Launche rs/Vega_rocket_ready_for_first_flight
  31. Calabro, M. et al, "ELV: Pressure-fed LOx/LH2 upper stage," Acta Astronautica, Vol. 64, pp. 1015-1020, 2009. https://doi.org/10.1016/j.actaastro.2008.12.011
  32. Szelinski, B. et al, "Development of an innovative sandwich common bulkhead for cryogenic upper stage propellant tank," Acta Astronautica, Vol. 81, pp. 200-213, 2012. https://doi.org/10.1016/j.actaastro.2012.06.025
  33. Guery, J-F et al, "Solid propulsion for space applications: An updated roadmap," Acta Astronautica, Vol. 66, pp. 201-219, 2010. https://doi.org/10.1016/j.actaastro.2009.05.028
  34. Shilu, C., "Progress and Development of Space Technology in China," Acta Astronautica, Vol. 46, No. 9, pp. 559-563, 2000. https://doi.org/10.1016/S0094-5765(00)00003-5
  35. Cyranoski, D., "China unveils its space station," Nature, Vol. 473, No. 7345, pp.14-15, 2011. https://doi.org/10.1038/473014a
  36. Cyranoski, D., "China forges ahead in space," Nature, Vol. 479, pp. 276-277, 2011. https://doi.org/10.1038/479276a
  37. Ninching, Z., "A personal viewpoint on the development of China's liquid propellant rocket engines," AD-A254 104, Aug., 1992.