DOI QR코드

DOI QR Code

Study on Effective Population Size of Holstein Population in Korea

우리나라 Holstein 젖소의 유효집단크기 조사 연구

  • 원정일 (농촌진흥청 국립축산과학원) ;
  • 김시동 (농촌진흥청 국립축산과학원) ;
  • 조광현 (농촌진흥청 국립축산과학원) ;
  • 민홍립 (농협중앙회 젖소개량사업소) ;
  • 구양모 (한국종축개량협회) ;
  • 윤호백 (농촌진흥청 국립축산과학원)
  • Received : 2013.06.23
  • Accepted : 2013.10.15
  • Published : 2013.10.31

Abstract

This study was carried out to estimate the average inbreeding coefficients and effective population size (EPS) and to seek alternatives on the problems of Holstein cattle in Korea. The data used in this study was obtained from the Korean Animal Improvement Association (KAIA) and 635,268 heads of Holstein records out of 1,872,195 Holstein registration data were used for the analysis. The average inbreeding coefficients were estimated at a range of 0.11 to 1.07%. The average inbreeding coefficients at the $14^{th}$, $19^{th}$ and $22^{nd}$ generation were estimated at 0.43%, 0.92% and 1.07%, respectively. The estimated inbreeding coefficients within the range of 0%, 0 to 6.25%, 6.25 to 12.5%, 12.5 to 25%, and >25% were observed in 50.5%, 48.3%, 0.8%, 0.1%, and 0.3% of the animals, respectively. The estimated effective population size (EPS) was 619 heads from the $8^{th}$ to $22^{nd}$ generation, and 922 heads from the $19^{th}$ to $22^{nd}$ generation.

본 연구는 우리나라 Holstein 젖소의 혈통정보를 이용하여 근교계수 및 유효집단크기를 추정하여, 우리나라 Holstein 집단의 문제점을 진단하고, 대처방안을 모색하고자 실시하였다. 분석에 사용된 자료는 (사)한국종축개량협회에 등록된 젖소 중 기초등록을 제외한 635,268두의 자료를 이용하였다. 평균 근교계수는 0.11에서 1.07%의 범위를 나타내었는데, 13세대까지는 비슷한 수준을 유지하다가 14세대 (0.43%)부터 증가하기 시작하여, 19세대에는 0.92%, 22세대에는 1.07%로 증가되었다. 근교계수가 0%, 0~6.25%, 6.25~12.5%, 12.50~25.% 및 25.% 이상인 개체의 비율은 각각 50.5%, 48.3%, 0.8%, 0.1% 및 0.3%로 나타났다. 유효집단 크기는 8세대부터 22세대까지 및 19세대부터 22세대까지에서 각각 619두 및 922두로 추정되었다.

Keywords

References

  1. Cassell, B. G., Adamec, V. and Pearson, R. E. 2003. Effect of incomplete pedigrees on estimates of inbreeding and inbreeding depression for days to first service and summit milk yield in Holsteins and Jerseys. J. Dairy Sci. 86:2967-2976. https://doi.org/10.3168/jds.S0022-0302(03)73894-6
  2. Cleveland, M. A., Blackburn, H. D., Enns, R. M. and Garrick, D. J. 2005. Changes in inbreeding of U. S. Herefords during the twenitieth century. J. Anim. Sci. 83:992-1001.
  3. Dang, C. G., Lee, J. J. and Kim, N. S. 2011. Estimaion of Inbreeding Coefficients and Effective Population Size in Breeding Bulls of Hanwoo (Korean Cattle). Kerean J. Anim. Sci. & Tech. 53(4):297-3023. https://doi.org/10.5187/JAST.2011.53.4.297
  4. Falconer, D. S. and Trudy, Mackay, F. C. 2006. Introduction to quantitative genetics. Longman.
  5. Food and Agriculture Organisation (FAO). 2004. Secondary guidelines for development of national farm animal genetic resources management plans. Management of small populations at risk. J. A. Woolloams, G. P. Gwaze, T. H. E. Meuwissien, D. Planchenault, J. P. Renard, M. Thibier and H. Wagner, ed Food and Agriculture Organisation of the United Nations.
  6. Franklin, I. R. 1980. Evolutionary change in samll populations. Pages 135-140 in: M. E. Soule and B. A. Wilcox (eds.), Conservation Biology: An Evolutionary-Ecological Perspective. Sunderland, Mass.: Sinauer Associates.
  7. Gengler, N., Misztal, I., Bertrand, J. K. and Culbertson, M. S. 1998. Estimation of the dominance variance for postweaning gain in the U.S. Limousin population. J. Anim. Sci. 76:2515-2520.
  8. Goddard, M. E., Hayes, B., McPartlan, H. and Chamberlain, A. J. 2006. Can the same genetic markers be used in multiple breeds? CD-ROM communication no. 22-16 in Proc. 8th World Congr. Genet. Appl. Livest. Prod., Belo Horizonte, Brazil.
  9. Gutiérrez, J. P., Altarriba, J., Díaz, C., Quintanilla, R., Cañón, J. and Piedarafita, J. 2003. Pedigree analysis of eight Spanish beef cattle breeds. Genet. Sel. Evol. 35:43-63. https://doi.org/10.1186/1297-9686-35-1-43
  10. Kang, M. S., Kim, K. W., Kim, N. S., Kim J. W., Kim, J. B., Kim, C. G., Kim, C. W., Kim, T. H., Na, S. H., Do, C. H., Park, C. G., Park, H. Y., Baek, D. H., Sang, B. C., Seo, K. S., Seok Y. O., Son, S. H., Yang, Y. H., Yeo, J. S., Yoo, B. H., Yoo, S. K., Lee, K. J., Lee, K. W., Lee, D. H., Lee, J. K., Lee, J. K., Lee, J. H., Lee, J. W., Lee, C. Y., Lee, H. K., Jeon, K. J., Jeon, J. T., Jeong, U. L., Jeong, H. W., Cho, B. W., Choi, Y. H., Choi, I. H., Han, J. Y. and Hong, K, C.. 2003. Animal Breeding. Sunjin Munhwasa.
  11. Kwon, O. S., Kim, S. D., Na, S. H., Park, B. H., Lee, S. S., Lee, J. G., Cho, K. H., Cho, C. I., Choi, Y. H., Choi, Y. L., Choi, J. K. and Choi, T. J. 2012. Pedigree Analysis Algorithm and Programming for Animal Breeding. National Institute of Animal Science, R.D.A.
  12. Maiwashe, A., Nephawe, K. A., van Westhuizen, R. R., Mostert, B. E. and Theron, H. E. 2006. Rate of inbreeding and effective population size in four major South African dairy cattle breeds. S. Afr. J. Anim. Sci. 36(1):50-57.
  13. Martínez, R. A., Grarcía, D., Gallego, J. L., Onofre, G., Pérez, J. and Cañón, J. 2008. Genetic variability in Colombian Creole cattle populations estimated by pedigree information. J. Anim. Sci. 86:545-552.
  14. Meuwissen and Luo, Z. 1992. Computing inbreeding coefficients in large populations. Gnet. Sel. Evol. 24:305-313 https://doi.org/10.1186/1297-9686-24-4-305
  15. Miglior, F., Burnside, E. B. and Dekkers, J. C. M. 1995. Nonadditive genetic effects and inbreeding depression for somatic cell counts of Holstein cattle. J. Dairy Sci. 78:1168-1173. https://doi.org/10.3168/jds.S0022-0302(95)76734-0
  16. Ministry of Agriculture, Food and Rural Affairs. 2013. Objective of animal improvement. Notification No. 2013-96 of the Ministry fo Agriculture, Food and Rural Affairs.
  17. Nomura, T., Honda, T. and Mukai, F. 2001. Inbreeding and effective population size of Japanese Black cattle. J. anim. Sci. 79:366-370.
  18. Park, B. H., Kim, S., Seo, K. S., Choi, J. G., Lee, Y. C., Cho, K. H., Choi, T. J. and salces, A. 2006. Inbreeding and Effective Population size of Holstein in Korea. 8th World Congress on Genetics Applied to Livestock Production.
  19. Parland, S. Mc., Kearney, J. F., Rath, M. and Berry, D. P. 2007b. Inbreeding trends and pedigree analysis of Irish dairy and beef cattle populations. J. Anim. Sci. 85:322-331. https://doi.org/10.2527/jas.2006-367
  20. Sargolzaei, M., Schenkel, F. S., Jansen, G. B. and Schaeffer, L. R. 2007. Estimating Effective Population Size in North American Holstein Cattle Based on Genome-wide Linkage Disequilibrium. Dairy Cattle Breeding and Genetics Committee Meeting.
  21. Shaffer, M. L. 1981. Minimum population sizes for species conservation. Bioscience 31:131-134. https://doi.org/10.2307/1308256
  22. Sørensen, A. C., Sorensen, M. K. and Berg, P. 2005. Inbreeding in Danish dairy cattle breeds. J. Dairy Sci. 88:1865-1872. https://doi.org/10.3168/jds.S0022-0302(05)72861-7
  23. Wall, E., Brotherstone, S., Kearney, J. F., Woolliams, J. A. and Coffey, M. P. 2005. Impact of nonadditive genetic effects in the estimation of breeding values for fertility and correlated traits. J. Dairy Sci. 88:376-385. https://doi.org/10.3168/jds.S0022-0302(05)72697-7
  24. Weigel, K. A. 2001. Controlling inbreeding in modern breeding programs. J. Dairy Sci. 84 (E. Suppl.) : E177-E184. https://doi.org/10.3168/jds.S0022-0302(01)70213-5
  25. Welgel, K. A. and Lin, S. W. 2002. Controlling inbreeding by constraining the average relationship between parents of young bulls entering AI progeny test programs. J. Dairy Sci. 85:2376-2383. https://doi.org/10.3168/jds.S0022-0302(02)74318-X