DOI QR코드

DOI QR Code

An Algorithm for Heavy Duty Truck Priority on Left-turn to Reduce Greenhouse Gas Emissions

온실가스 감축을 위한 대형 화물차 좌회전 우선신호 알고리즘 개발

  • Yang, Se Jung (Dept. of Civil and Environmental Engineering, Seoul National University) ;
  • Kim, Suhyeon (Highway & Transportation Research Division, Korea Institute of Construction Technology) ;
  • Kim, Hyo Seung (Integrated Research Institute of Construction and Environment, Seoul National University) ;
  • Lee, Chungwon (Dept. of Civil and Environmental Engineering, Seoul National University)
  • 양세정 (서울대학교 건설환경공학부) ;
  • 김수현 (한국건설기술연구원 도로교통연구실) ;
  • 김효승 (서울대학교 건설환경종합연구소) ;
  • 이청원 (서울대학교 건설환경공학부)
  • Received : 2013.04.17
  • Accepted : 2013.08.21
  • Published : 2013.10.31

Abstract

This study aims to develop a truck priority on left-turn algorithm that can reduce greenhouse gas emissions by reducing heavy duty truck's stops at signalized intersection. The signal priority is granted for a left-turn phase, because heavy duty trucks can deteriorate left-turn traffic flow due to the low acceleration or deceleration rate and large turn radius. Truck priority allows to provide the stable speed control for heavy duty truck, and reduces emissions at the signal intersection. Also, two signal recovery strategies are compared for various traffic conditions. This study analyzes the effectiveness of truck priority such as greenhouse gas emissions and fuel consumption reduction, and total travel time saving using the PARAMICS and Comprehensive Modal Emissions Model (CMEM). The results show that signal priority for heavy duty trucks has an effect on reducing greenhouse gas emissions and fuel consumptions at non-peak hour. Also, it shows decreasing total travel time due to reducing truck stops.

본 연구는 신호 교차로에서 대형 화물차의 정지로 인해 야기되는 온실가스 배출과 교차로 효율 저하를 완화하기 위해 좌회전 현시의 대형 화물차 대상 우선신호 알고리즘을 제안하고 효과를 분석한다. 대형 화물차의 진입 속도와 좌회전 속도를 고려한 녹색신호 연장 기법을 적용하며, 우선신호 제공으로 인해 발생할 수 있는 일반차량의 지체 증가를 완화하기 위해 두 가지 보상 전략을 수립하여 비교한다. 제안된 알고리즘의 효과를 분석하기 위해 PARAMICS를 이용한 시뮬레이션 분석을 수행하며 Comprehensive Modal Emissions Model (CMEM)을 이용하여 온실가스 배출량을 산정하였다. 실제 교통망의 3지 신호교차로를 대상으로 분석한 결과 비첨두시에는 대형 화물차에 능동적 보상 전략을 통해 지속적으로 우선권을 부여하는 것이 온실가스 및 연료소모량 감축에 효과가 있는 것으로 분석되었으며, 대형 화물차의 정지 감소로 인해 총통행시간도 개선되는 것으로 나타났다. 이러한 결과로부터 제안된 알고리즘은 교통량이 많지 않은 공단 입구의 좌회전 현시에 효과적으로 적용될 수 있을 것으로 판단된다.

Keywords

References

  1. AASHTO (2011), A Policy on Geometric Design of Highways and Streets.
  2. Bonnesone J., Middleton D., Zimmerman K., Charara H., Abbas M. (2002), Intelligent Detection-Control System for Rural Signalized Intersections, Texas Department of Transportation.
  3. Boriboonsomsin K., Barth M. (2008), Impacts of Freeway High-occupancy Vehicle Lane Configuration on Vehicle Emissions, Transp. Res.-D, 13(2), 112-125. https://doi.org/10.1016/j.trd.2008.01.001
  4. Chamberlin R., Swanson B., Talbot E., Dumont J., Pesci S. (2011), Analysis on MOVES and CMEM for Evaluating the Emissions Impact on an Intersection Control Change, 90th Annual Meeting of the Transportation Research Board, 11-0673.
  5. Currie G., Shalaby A. (2008), Active Transit Signal Priority for Streetcars: Experience in Melbourne, Australia, and Toronto, Canada, Transp. Res. Rec., 2042, 41-49. https://doi.org/10.3141/2042-05
  6. Dion F., Rakha H., Zhang Y. (2004), Evaluation of Potential Transit Signal Priority Benefits Along a Fixed-Time Signalized Arterial, J. Transp. Eng., 130(3), 294-303. https://doi.org/10.1061/(ASCE)0733-947X(2004)130:3(294)
  7. Ekila W., Sayed T., Esawey M. E. (2009), Developement of Dynamic Transit Signal Priority Strategy, Transp. Res. Rec., 2111, 1-9. https://doi.org/10.3141/2111-01
  8. Gates T. J., Noyce D. A. (2010), Dilemma Zone Driver Behavior as a Function of Vehicle Type, Time of Day, and Platooning, Transp. Res. Rec., 2143, 88-93.
  9. Hong C. E., Kwon O. Y. (2002), Estimating of the Adequate Yellow-time Considering the Driving Patterns of the Left-turn Vehicle, J. Traffic Saf. Res., 21, 59-68.
  10. Ioannou P., Anastasios C., Arnab B., Hossein J., Alez K., Hamid P. et al. (2001), Modeling and Route Guidance of Trucks in Metropolitan Areas, METRANS.
  11. Kim J. H., Kim H. S., Choi S.-J., Park S.-K., Kim J., Jang Y. K. (2011), A Study on the Calculation of $CO_2$ Emission and Road Freight Environmental Index for Logistics Companies, J. Korean Soc. Transp., 29(2), Korean Society of Transportation, 25-35.
  12. Kim Y. K., Wu S. K., Park S., Kim M. J., Han D. H. (2011), A Study on Evaluation Methodology of Green house Gas and Air Pollutant Emissions on Road Network, The Korea Transport Institute.
  13. Liu C., Herman R., Gazis D. (1996), A Review of the Yellow-light Interval Dilemma, Transp. Res.-A, 30(5), 333-348.
  14. MLTM (2012), Statistical Yearbook of Traffic Volume, Korea Ministry of Land, Transportation and Maritime Affairs.
  15. Minnesota Department of Transportation (2004), Truck Priority at Signalized Intersections, Short Elliott Hendrickson, INC., Minnesota.
  16. Peterson A., Bergh T., Steen K. (1986), LHOVRA: A New Traffic Signal Control Strategy for Isolated Junctions, Traffic Eng. and Control, 27(7/8), 98-101.
  17. Ramsay E. D., Bunker M. J., Bruzsa L. (2006), Management of Traffic-related Effects of Heavy Vehicles on Urban Freight Corridors, Proceeding 9th International Symposium on Heavy Weights and Dimensions, Pennsylvania State University.
  18. Scora G., Barth M. (2006), Comprehensive Modal Emission Model (CMEM), Version 3.01 User's Guide, University of California Riverside Center for Environmental Research and Technology.
  19. Skabardonis A. (1998), Control Strategies For Transit Priority, California Partners for Advanced Transit and Highways (PATH), Research Reports, UCB-ITS-PRR-98-2.
  20. Sunkari S. R., Chrara H. A., Urbanik T. (2000), Reducing Truck Stops at High-Speed Isolated Traffic Signals, Texas Transportation Institute.
  21. Zimmerman K. (2007), Additional Dilemma Zone Protection for Trucks at High-Speed Signalized Intersections, Transp. Res. Rec., 2009, 82-88. https://doi.org/10.3141/2009-11