
JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.13, NO.5, OCTOBER, 2013 http://dx.doi.org/10.5573/JSTS.2013.13.5.415

Manuscript received May. 23, 2012; accepted Jun. 25, 2013
School of Electronics Engineering, Kyungpook National University
1370 Sankyuk-dong, Buk-gu, Daegu 702-701, Korea
E-mail : sdyu@mail.knu.ac.kr

Self-Checking Look-up Tables using Scalable Error
Detection Coding (SEDC) Scheme

Jeong-A Lee, Zahid Ali Siddiqui, Natarajan Somasundaram, and Jeong-Gun Lee

Abstract—In this paper, we present Self-Checking
look-up-table (LUT) based on Scalable Error
Detection Coding (SEDC) scheme for use in fault-
tolerant reconfigurable architectures. SEDC scheme
has shorter latency than any other existing coding
schemes for all unidirectional error detection and the
LUT execution time remains unaffected with self-
checking capabilities. SEDC scheme partitions the
contents of LUT into combinations of 1-, 2-, 3- and 4-
bit segments and generates corresponding check
codes in parallel. We show that the proposed LUT
with SEDC performs better than LUT with
traditional Berger as well as Partitioned Berger
Coding schemes. For 32-bit data, LUT with SEDC
takes 39% less area and 6.6 times faster for self-
checking than LUT with traditional Berger Coding
scheme.

Index Terms—Self-checking circuit, error detection
coding, unidirectional transient errors, look-up table,
reconfigurable architecture

I. INTRODUCTION

Field Programmable Gate Array (FPGA) is a
reconfigurable architecture suitable for embedded
systems in providing various functionalities quickly.
Scaling of silicon technology to nano dimensions has
significantly improved FPGA technology but the
interaction of neutron and alpha particles with nano-sized

semiconductor devices may lead to transient hardware
faults in addition to certain intermittent or persistent
faults due to design and manufacturing defects. Studies
show that the majority of errors are caused by transient
faults [1]. The types of faults within a VLSI circuit have
been analyzed and found to be of the type which would
tend to affect the bits in a unidirectional manner.
Unidirectional errors can alter the node logic from zero
to one or from one to zero, but not both at the same time
[2].

A Look-Up Table (LUT)-based function generator is a
basic block of a reconfigurable architecture. In fault-
tolerant reconfigurable systems, self-checking LUTs
must detect all the unidirectional errors even when the
system is functioning, that is, online fault detection.
Online fault detection methods can be broadly classified
as redundancy and error coding [3]. When using modular
or time redundancy techniques there is an area overhead
or latency overhead by two or three times [4]. Error
coding technique is more efficient that the other fault
detection methods in terms of area, speed and fault
coverage and most suited for implementing self-checking
circuits [5]. Many unidirectional error detecting codes
like Parity code, Hamming code, Reed Solomon code,
Berger code and Bose code have been reported in the
literature. Among these coding algorithms, Berger
coding algorithm [6] alone has 100% fault coverage for
all unidirectional errors. The error-check code is
generated by counting the number of logic 0’s, or
sometimes logic 1’s, in the input data and representing
the count as a binary number [7]. The sequential circuit
implementation of this technique requires resource
overhead to implement counter circuits and takes
multiple clock cycles to detect the error. The

416 JEONG-A LEE et al : SELF-CHECKING LOOK-UP TABLES USING SCALABLE ERROR DETECTION CODING (SEDC) SCHEME

combinational circuit implementation of Berger can
reduce latency with additional area resources.
Incorporating Berger code into a delay-optimized circuit
to make it self-checking thereby affects the system clock
speed and timing constraints of the circuit, due to the
dependency of Berger code on the input data length.

In this paper, we presented method to employ SEDC
scheme for designing self-checking LUTs and show that
SEDC is better in terms of area as well as delay in
comparison with Berger coding scheme. The rest of the
paper is organized as follows: In Section II the
introduction to SEDC scheme for 2-bit input data is
given with method to scale it to n-bit data. The technique
with which SEDC scheme detects all unidirectional
errors is also illustrated in Section II. In Section III, we
compared SEDC scheme with traditional Berger scheme
and with modified version of Berger scheme, we called
as "Partitioned Berger". The comparison is done with
respect to area and delay. Note that the data partitioning
has been used in the coding for data communication and
our approach is similar to the partitioning used in the
field of communication theory. However, the goal of our
research is focused on the high speed code generation
circuits for fault-tolerant hardware design with minimal
overhead. The Totally-Self Checking property of SEDC
is discussed in Section IV with a little introduction to
TSC SEDC checker. In Section V we discuss how this
TSC property of SEDC scheme can be used to design
TSC LUTs while Section VI we compare the area and
delay performance of SEDC with sequential and
combinational implementations of Berger implement-
tations for 6-input LUT. Finally Section VII concludes
the paper.

II. SCALABLE ERROR DETECTION CODING

(SEDC) ALGORITHM

The new Scalable Error Detection Coding algorithm
[8] presented is formulated and architecture is designed
in such a way that only area is scaled, while latency
remains same for n > 3.

For input binary data D of length n-bits represented as
(Dn-1,….., D2, D1, D0) with Di Î {0, 1} for 0 ≤ i ≤ n-1,
two parameters ‘a’ and ‘b’ are computed using Eq. (1)
where, parameter ‘a’ can only be a positive integer, and
parameter ‘b’ can take values only from 1, 2, 3 or 4.

 max()
4

n ba -
= (1)

where b should be selected among 1, 2, 3, and 4 to make
'a' a positive integer number.

Satisfying the condition for parameter ‘a’, the
maximum possible value for parameter ‘b’ is selected.
The length of SEDC code C represented as (Cm-1, …,
Cj, ..., C2, C1, C0) with Cj Î {0, 1} for 0 ≤ j ≤ m-1, is then
computed as per Eq. (2).

 (2)

After computing the values for parameters ‘a’ and ‘b’,

the SEDC code ‘C’ for input binary data ‘D’ is computed.
SEDC is designed to generate codes basically for 1, 2-,
3-, and 4-bit data and accordingly referred to as SEDC1,
SEDC2, SEDC3 and SEDC4 scheme, respectively. It is
then extended for any integer values of n, as shown in
Fig. 1.

For 1-bit data, the complement of data bit is
represented as SEDC1 code.

Table 1 shows the code table for 2-bit data, i.e., SEDC2

scheme. For discussion in this paper, code scheme 1 is
considered. In order to detect unidirectional errors, we
assign same code for both data (01)2 and (10)2 (since it
contains both 1 and 0). The two cases in Table 1 can be
shown to detect all unidirectional errors for 2-bit data and
can be extended to detect all unidirectional errors for 3-
bit data, as shown later.

Fig. 1. SEDC scheme for given data word. SEDCb is one of
SEDC1, SEDC2, SEDC3 or SEDC4.

Table 1. Code Table for SEDC2

2-bit Data SEDC2

Scheme 1
SEDC2

Scheme 2
00 11 11
01 01 10
10 01 10
11 10 01

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.13, NO.5, OCTOBER, 2013 417

The SEDC coding scheme assigns code word to
different data words with a unique criteria. Whenever
there is a change of bit (or bits) in data word from '0' →
'1', the change is reflected in code word in opposite way,
i.e., the code changes from '1' → '0', and vice versa. Also
the data words which differ each other by unidirectional
bit (or bits) flipping, are assigned different code words.
Fig. 2 is a 2-D square illustration of SEDC2 scheme
where nodes represent data words and their corres-
ponding code words (written in brackets).

For example, if there is an unidirectional error from
'00' to '01', the code word also changes from '11' to '01' to
alarm the error. Note that the LSB of the data word
changes in one direction ('0' to '1') while the MSB of the
code word changes in opposite direction ('1' to '0').

SEDC function for 3-bit data, SEDC3, is formulated as
per Eq. (3).

()
()

()()
2 1 0 2

1 0
2 1 0 2

 SEDC , , if 0
,

 1's complement SEDC , , if 1

D D D
C C

D D D

ì =ï= í
=ïî

 (3)

Table 2 illustrates the scaling of SEDC2 to SEDC3.

SEDC2 is embedded in the SEDC3 scheme, i.e., the first
four code words are same as SEDC2 as shown in Fig. 3
with Red box. Remaining four code words are generated
by following steps: For an example with ‘100’ data,

(1) Invert all the data bits (we take '100'→'011') .
(2) Find the SEDC2 code word corresponding to the

inverted data resulting from step 1 ('011'→'01').
(3) Now invert the SEDC2 code word which came

from step 2 ('01'→'10').
(4) The inverted SEDC2 code word resulted in step 3

becomes the code word for the data word selected in step

1('100' [SEDC2] → '10', which can be verified from
Table 1).

Fig. 3 shows a 3-D cube diagram for understanding
how SEDC3 code works for detecting all unidirectional
errors. Same notations are used in Fig. 3 as in Fig. 2. The
red part of the cube shows the embedded SEDC2 coding
scheme in SEDC3. Note that when there is a 2-bit
unidirectional change in data word '001' to '111' (two
MSB's changing from '00' to '11'), the code is changing in
the opposite direction (LSB of the code changes from '1'
to '0'). Further examine of the cube tells that all
unidirectional errors are detectable by SEDC scheme.

SEDC function for 4-bit data, SEDC4, is formulated as
per Eqs. (4) and (5).

 1 0 3 2 1 0(,) (, ,)C C SEDC D D D= (4)
 ()2 3C NOT D= (5)

From Eq. (4) it can be seen that in SEDC4, the MSB of

the code word is completely dependent upon MSB of the
data word, hence any change in the MSB of the data

Fig. 2. 2-D square illustration of SEDC2 scheme.

Table 2. Code Table for SEDC3

D C
D2 D1D0 (C1C0)

00 11

01 01

10 01

0

11 10

00 01
01 10
10 10

1

11 00

Fig. 3. 3-D cube illustration of SEDC3 scheme.

418 JEONG-A LEE et al : SELF-CHECKING LOOK-UP TABLES USING SCALABLE ERROR DETECTION CODING (SEDC) SCHEME

word is detected.
We also verified that every possible combination of

unidirectional errors that can ccurre in real situation can
be detected by exhaustive fault simulation for SEDC2,
SEDC3 or SEDC4 [8].

In general, for SEDCn function, the n-bit binary data is
grouped into one ‘b’-bit segment and ‘a’ number of 4-bit
segments, on which SEDCb and SEDC4 functions are
applied. This is a unique feature of this scalable
algorithm. Fig. 1 shows SEDC code generation for n-bit
input data. It is noteworthy that each group of data
segment and corresponding code segment is independent
to each other. This independency makes our SEDC
scheme scalable. Moreover, the overall latency is fixed
for n bigger than 3 which equals to the latency of SEDC4
module.

We observed that SEDC3 embedding SEDC2 with
scheme 2 in Table 1 happens to be Berger code for 3-bit
data. In the case of SEDC4, it is different and performs
better than Berger code. With 4-bit data, the maximum
number of '1' or '0' is 4 so we have to encode the five
possible cases, 0, 1, 2, 3, 4 that needs at least 3-bit check
bits for Berger Code. With 3-bit check bits, Berger code
only uses 5 cases out of 8 cases. On the other hand, our
SEDC4 uses all 8 cases produced from the binary
combinations of 3-bits as check bits. Note that the code
assignment of our SEDC4 help minimizing logic circuits
for code generation compared with that of Berger code
due to the better placement of '1' in Karnaugh-map. The
circuit of SEDC4 code generation is more efficient than
the circuit of the 4-bit Berger code generation with
respect to area and performance.

III. AREA AND DELAY COMPARISON OF SEDC

CODE GENERATOR

To the best of our knowledge there has been no such
implementation in which the input bits are partitioned for
scalable code generation. We have exploited this
partitioning method for parallelism in hardware, and thus
resulting in faster implementation of Scalable Error
Detection Scheme. We also apply this partitioning for
Berger scheme for performance comparison and named it
as “Partitioned Berger”.

Parallelism in any hardware requires more area
resources, as does with the SEDC. When compared to
partitioned Berger coding scheme, SEDC scheme
requires less area.

Table 3 contains total number of transistors for
traditional Berger, partitioned Berger and SEDC scheme.
The transistor counts for Berger scheme are taken from
[7] and [9]. Since the Berger codes have used the number
of ‘1’ or ‘0’ in data bits, a counter [7] or an adder [9]
based implementations of Berger code generation circuits
have been used traditionally. Due to the different
implementation styles, the circuit implementations can be
different in size and complexity. As SEDC code size
increases faster than Berger scheme, so for fair
comparison, we have also considered the code storage
part (1 bit storage is implemented using 12 transistors)
for all three schemes in Table 3. It is clear that even after
having bigger code size, SEDC implementation takes
less area in total than traditional Berger codes as shown
in Table 3.

Table 3. Circuit Size Comparison

Traditional Berger code
generator [9]

Partitioned Berger (using the
implementation of [9])

Partitioned Berger (using the
implementation of [7]) SEDC

D
at

a
Le

ng
th

Area Code
Area Total Area Code

Area Total Area Code
Area Total Area Code Area Total

2 12 24 36 12 24 36 22 24 46 12 24 36
3 28 24 52 28 24 52 67 24 91 28 24 52
4 52 36 88 52 36 88 142 36 178 30 36 66
5 80 36 116 52 48 100 142 48 190 32 48 80
7 136 36 172 80 60 140 209 60 269 58 60 118
8 148 48 196 104 72 176 284 72 356 60 72 132
16 356 60 416 208 144 352 568 144 712 120 144 264
32 788 72 860 416 288 704 1136 288 1424 240 288 528

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.13, NO.5, OCTOBER, 2013 419

If we compare the delay performance of SEDC
scheme with Berger codes, SEDC scheme totally
outperform the traditional Berger scheme (see Fig. 4),
due to the parallelism in the SEDC hardware architecture.
On the other hand, partitioned Berger (both [7] and [9]
shows improvement in delay performance, which is
achieved at the cost of more area overhead and thus more
power dissipation. Hence, the overall performance of
SEDC scheme is better as compared to traditional Berger
as well as partitioned Berger scheme.

In the next section, we discuss how this SEDC scheme
is totally self-checking, and can be used to design TSC
LUTs.

IV. TOTALLY SELF-CHECKING PROPERTY OF

SEDC CIRCUITS

The following definitions can be used to describe a
Totally Self-Checking (TSC) system [9-12].

Definition 1: A circuit is fault-secure for a set of faults,

if for any valid input and for any fault among the fault set,
the circuit either produces a faulty codeword, or correct
output.

Definition 2: A circuit is self-testing for a set of faults,
if for every fault among the fault set, the circuit produces
a faulty codeword for at least one valid input.

Definition 3: A circuit is TSC if it is both fault-secure
and self-testing.

The number of faults in a system is typically modeled

as a Poisson process. Hence, it is assumed that in case of
self-checking circuits, faults from the fault set occur one
at a time, and between any two faults a sufficient time

interval exists [13, 14]. Fig. 5 shows the block diagram
for a totally self-checking circuit using SEDC algorithm.
The unidirectional error can occur in one of the blocks:
Circuit Output F, SEDC code C or in SEDC checker K.

Accordingly, 3 different cases arise.

· Case 1- Circuit output F is faulty: In this case, the

SEDC code C generated for the inputs will not match
with the Circuit Output F. Thus, unidirectional fault is
indicated by the SEDC Checker K.
· Case 2- SEDC code C is faulty: Even in this case,

the SEDC code C generated for the inputs will not match
with the Circuit Output F. Thus, unidirectional fault is
indicated by the SEDC Checker K.
· Case 3- SEDC Checker K is faulty: In this case,

the SEDC code C generated for the inputs will match
with the Circuit Output F. If the SEDC Checker K is
faulty, only a fault-alarm is generated and the output is
indicated as faulty. The unidirectional error is not
propagated to further stages of the system.

This proves that the circuit encoded using SEDC
algorithm is totally self-checking circuit. In the next
section we apply this TSC property of SEDC scheme to
design TSC LUTs.

V. SEDC-BASED SELF-CHECKING LUT

ARCHITECTURE

Fig. 6 shows the SEDC-based self-checking single or
multiple output K-bit LUT architecture. The SEDC code
bits for LUT contents are pre-computed and are
downloaded at the time of configuration of FPGA.

Fig. 4. Delay comparison between traditional Berger,
partitioned Berger and SEDC scheme.

Fig. 5. Totally Self-Checking circuit using SEDC Algorithm.

420 JEONG-A LEE et al : SELF-CHECKING LOOK-UP TABLES USING SCALABLE ERROR DETECTION CODING (SEDC) SCHEME

During LUT operation, the SEDC code bits are generated
for LUT content and compared with the pre-computed
code bits by the equivalence tester for validating the LUT
output as correct or faulty. These operations are
performed continuously. A faulty output indicates the
presence of unidirectional error in the LUT block. In this
paper, only the SEDC code bit generator and pre-
computed code bits circuits are considered for
comparison with Berger scheme.

As mentioned in Section III, the SEDC code
generation unit requires few gates, that are implemented
with [2 + (a ´ 30)] MOS transistors if ‘b = 1’, [12 + (a ×
30)] MOS transistors if ‘b = 2’, [28 + (a × 30)] MOS
transistors if ‘b = 3’ or [30 + (a × 30)] MOS transistors if
‘b = 4’. As we already discussed in Section II that the
overall latency of SEDC scheme is fixed for n > 2.

In Berger coding scheme, the number of code bits for
data length of n bits is m = élog2(n + 1)ù. The sequential
implementation of Berger code generator unit requires n-
bit shift register implemented using D flip flops and m-
bit counters implemented using T flip flops. Here we
have assumed that each D and T-flip flop is implemented
using 12 MOS transistors. Hence, the Berger code
generation unit for data length n bits and m-bit code bits
requires (n + m) × 12 MOS transistors. The compu-
ational latency for computing Berger code bits for data
length n bit is n clock cycles. Also, the clock cycles must
have a minimum time period which depends upon the
critical path delay of the circuit. In Table 4, we show the
critical path of the sequential Berger code generator
scheme in terms of numbers of transistors. The
computational latency of Berger code generator will be
'n' times to the critical path time since n number of cycles
are required to complete the operation.

Data for latency optimized combinational implemen-

ation of Berger code generator is taken from [7]. The
circuit diagrams for up to 32-bit Berger code generator
are given in [7], from where we have calculated the
number of transistors for Berger implementation. The
scaling scheme given in [7] is such that the information
bits I are divided into two parts, Ir = I/2 and Ir*= I-[I/2]. If
we suppose the case when I = 32, then Ir =16 and Ir*=16,
which means that at least two 16-bit Berger code
generators are required, along with some additional
circuitry. This additional circuit is made by different type
of binary adders, which depends on the information bit
length. As the circuit diagram for 64-bit Berger code
generator is not given in the paper, so we approximated
the number of transistors by using two 32-bit Berger
code generators and neglecting the extra adder circuitry.

VI. COMPARISON RESULTS OF AREA AND

DELAY OF TSC LUTS

Comparison of the proposed SEDC-based
implementation of code bit generator circuit for self-
checking 6-bit LUT and implementation using Berger
coding algorithm [7] is shown in Table 4. Logic given in
Section II for implementing SEDC2, SEDC3 and SEDC4
circuits is utilized to develop all the SEDC circuits given
in Tables 3 and 4. Circuits are evaluated using Logic
Friday software and tested with Verilog HDL code,
synthesized by Altera’s Quartus II. It can be seen from
the tables that for the case of Berger coding algorithm,

Table 4. Implementation results for Fault-tolerant 6-bit LUT
with single output

Resource
Requirements

SEDC
Algorithm

Berger coding
Algorithm
(Sequential

Implementation)

Berger coding
Algorithm

(Combinational
Implementation)

[7]
(Data bit size = 64 bits)

Code size (bits) 48 bits 7 bits 7 bits
Area required for
code storage (# of

transistors)
576 MOS 84 MOS 84 MOS

Code generation
logic 480 MOS 852 MOS 3878 MOS*

Total # of
transistors 1056 MOS 936 MOS 3962 MOS

Clock cycle - 64 -
Latency (#of

transistors in critical
path)

6 MOS 192 MOS 46 MOS*

Fig. 6. SEDC-based Self-Checking LUT Architecture.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.13, NO.5, OCTOBER, 2013 421

with increase in binary data length, either the clock cycle
increases due to shift register and binary counters, or
there is an increase in latency due to adder tree [7], both
of which are undesired for delay-optimized
reconfigurable embedded architectures. SEDC scheme,
on the other hand, requires more storage resources but
the computation is done within a single clock cycle and
the maximum latency is limited to 6 equivalent MOS
transistor levels, which does not affect the optimized
LUT performance.

VII. CONCLUSIONS

A new error detection coding algorithm achieving all
unidirectional error detection with a maximum latency
equivalent to 6 MOS transistor levels and requires only a
single clock cycle is proposed. The algorithm
outperforms other error detection coding algorithms. An
architecture for fault-tolerant self-checking LUT is also
proposed. We show that only area is scaled with SEDC
architecture and latency remains constant regardless of
input data length. The proposed SEDC architecture can
also be extended to self-checking Programmable
Arithmetic and Logic Unit (PALU)-based architectures.

ACKNOWLEDGMENTS

This study was supported in part by research fund
from Chosun University, 2012

REFERENCES

[1] J. R. Schwank et al., “Radiation effects in MOS
Oxides,” IEEE Trans. Nucl. Sci. vol. 55, no. 4, pp.
1833-1853, 2008.

[2] B. Bose, and D. K. Pradhan, “Optimal
Unidirectional Error Detecting/Correcting Codes,”
IEEE Trans. Comput. vol. C-31, no. 6, pp. 564-568,
1982.

[3] E. Stott, P. Sedcole, and P. Cheung, “Fault Tolerant
methods for reliability in FPGAs,” Proc. Int. Conf.
Field Programmable Logic, pp. 415-420, 2008.

[4] R. V. Kshirsagar, and R. M. Patrikar, “A novel
fault tolerant design and an algorithm for tolerating
faults in digital circuits,” Proc. 3rd Int. Design and
Test Workshop (IDT) pp. 148-153, 2008.

[5] N. Alves, “State-of-the-Art techniques for detecting
transient errors in electrical circuits,” IEEE
Potentials vol. 30, no. 3, pp. 30-35, 2011.

[6] A. Morozov et al., “New self-checking circuits by
use of Berger-codes,” Proc. IEEE Int. On-Line
Testing pp. 141-146, 2000.

[7] D.A. Pierce Jr, and P.K. Lala, “Modular
Implementation of Efficient Self-Checking
Checkers for the Berger Code,” J. of Electronic
Testing: Theory and Applicat., vol. 9, no. 3, pp.
279-294, 1996.

[8] S. Natarajan, J. A. Lee, and J. G. Lee, Scalable
Error Detection Coding (SEDC) Generator, Self-
Checking look-up Table having the Generator and
Method of Scalable Error detection Coding, Korean
Patent Application no. 10-2011-0098730, filed 29
September 2011.

[9] N. K. Jha, and S. J. Wang, “Design and Synthesis
of Self-Checking VLSI Circuits”, in IEEE
Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 12, no. 6, pp.
878-887, 1993.

[10] D. K. Pradhan, and J. J. Stiffler, "Error-Correcting
Codes and Self-Checking Circuits", in Computer,
vol. 13, no. 3, pp. 27-37, 1980.

[11] D. A. Anderson, and G. Metze, “Design of Totally
Self-Checking Check Circuits for m-Out-of-n
Codes”, in IEEE Transactions on Computers, vol.
C-22, no. 3, pp. 263-269, 1973.

[12] G. M. Koob, and C. G. Lau, Foundations of
Dependable computing: System Implementation,
Kluwer Academic Publishers, 1994.

[13] J. E. Smith, and G. Metze, "Stronlgy Fault Secure
Logic Networks", in IEEE Transactions on
Computers, vol. C-27, no. 6, pp. 491-499, 1978.

[14] C. Metra, M. Favalli, and B. Ricco, "Self-Checking
Detection and Diagnosis of Transient, Delay, and
Crosstalk Faults Affecting Bus Lines", in IEEE
Transactions on Computers, vol. 49, no. 6, pp. 560-
574, 2000.

422 JEONG-A LEE et al : SELF-CHECKING LOOK-UP TABLES USING SCALABLE ERROR DETECTION CODING (SEDC) SCHEME

Jeong-A Lee received B.S. in
Computer Engineering from Seoul
National University in 1982, M.S. in
Computer Science from Indiana
University in Bloomington and Ph.D
in Computer Science from UCLA in
1990. From 1990 to 1995, she was an

Assistant Professor with the Department of Electrical and
Computer Engineering, University of Houston, Texas.
Since 1995 she has been Professor and Head of
Computer Systems Laboratory, Chosun University in
Korea. From 2008 to 2009, she served as a director of
Electrical and Computer Science and Engineering,
National Research Foundation of Korea. Her research
activities cover high-performance computer architecture,
fast digital and CORDIC arithmetic, configurable
computing and bio-inspired fault-tolerant computing. She
is the author and coauthor of more than 100 reviewed
journal and conference papers. Professor Lee is a
member of National Academy of Engineering, Korea.

Zahid Ali Siddiqui received B.E.
degree in Electronics from NED
University of Engineering and
Technology, Karachi in 2009 and got
lectureship in the Department of
Electronic Engineering at NED
University in 2010. He is recipient of

Global IT scholarship and currently doing M.S. in
Computer Science from Chosun University. His research
interests are related to embedded systems design, fault
tolerant FPGA architecture and reconfigurable computing.

Natarajan Somasundaram received
the B.E. degree in Electronics and
Communication Engineering from
Amrita Institute of Technology and
Science, Bharathiyar University in
2002, M.E. degree in Embedded
System Technologies from College

of Engineering, Anna University Chennai in 2005, and
Ph.D. degree from College of Engineering, Anna
University Chennai in 2009, respectively. From 2010 to
2011, he was an Assistant Professor at Department of
Electronics and Communication Engineering, Bannari
Amman Institute of Technology, Sathyamangalam,
INDIA. From 2011 to 2012, he was a post-doctoral
student with the Chosun University, Gwangju, South
Korea. In 2012, he joined the Department of Electronics
and Communication Engineering, SSM College of
Engineering, Komarapalayam, INDIA, where he is
currently an Associate Professor. His research interests
include Reconfigurable embedded architecture, bio-
inspired computing and VLSI design.

Jeong-Gun Lee received the B.S.
degree in computer engineering from
Hallym University in 1996, and M.S.
and Ph.D degree from Gwangju
Institute of Science and Technology
(GIST), Korea, in 1998 and 2005. He

is currently an Associate Professor in the Computer
Engineering department at Hallym University. Prior to
joining the faculty of Hallym University in 2008, he was
a postdoctoral researcher of the Computer Lab. at the
University of Cambridge, UK. His research interest focus
on an asynchronous circuit design, network-on-chip,
reconfigurable processor and multi-core systems for
multi-media applications.

