DOI QR코드

DOI QR Code

Optimal Location Problem for Constrained Number of Emergency Medical Service

한정된 응급시설의 최적위치 문제

  • Lee, Sang-Un (Dept. of Multimedia Eng., Gangneung-Wonju National University)
  • 이상운 (강릉원주대학교 멀티미디어공학과)
  • Received : 2013.08.06
  • Accepted : 2013.08.27
  • Published : 2013.10.31

Abstract

This paper proposes an EMS algorithm designed to determine the optimal locations for Emergency Medical Service centers that both satisfy the maximum ambulance response time T in case of emergency and cover the largest possible number of residents given a limited number of emergency medical services p in a city divided into different zones. This methodology generally applies integer programming whereby cases are categorized into 1 if the distance between two zones is within the response time and 0 if not and subsequently employs linear programming to obtain the optimal solution. In this paper, where p=1, the algorithm determines a node with maximum coverage. In cases where $p{\geq}2$, the algorithm selects top 5 nodes with maximum coverage. Based on inclusion-exclusion method, this selection entails repeatedly selecting a node with the maximum coverage when nodes with lower numbers are deleted. Among these 5 selected nodes, the algorithm selects a single node set with the greatest coverage and thereby as the optimal EMS location. The proposed algorithm has proven to accurately and expeditiously obtain the optimal solutions for 12-node network, 21-node network, and Swain's 55-node network.

본 논문은 여러 구역으로 분할된 도시에서 응급환자가 발생하였을 때 이에 대처하기 위한 최대 허용 도착시간 T를 충족시키면서, 응급시설 수 p를 한정시켰을 때 최대한의 주민수를 커버할 수 있는 응급시설의 최적 위치를 결정하는 알고리즘을 제안하였다. 이 문제는 일반적으로 두 구역 간 소요시간이 최대허용 도착시간이내이면 1로, 그렇지 않으면 0으로 하는 정수계획법으로 변환시키고, 선형계획법 도구를 활용하여 해를 구한다. 본 논문은 p=1인 경우 최대로 커버하는 노드로 결정하며, $p{\geq}2$인 경우 최대한으로 커버할 수 있는 노드 상위 5개를 $p_1$기준으로 포함-배제 원칙을 적용하여 $p_1$이 커버하는 영역을 삭제하였을 때 남은 노드들 중에서 최대로 커버하는 노드를 $p_2$로, $p_1,p_2$ 커버 영역을 삭제시 최대로 커버할 수 있는 노드를 $p_3$로 결정하였다. 이들 5개 기준 노드 집합 들 중에서 최대로 커버하는 노드 집합을 최적의 응급시설 위치로 결정하였다. 제안된 알고리즘을 12-노드 망, 21-노드 망과 Swain의 55-노드 망에 적용한 결과 최적해를 쉽고 빠르며, 정확하게 결정할 수 있었다.

Keywords

References

  1. M. S. Daskin and E. H. Stern, "A Hierarchical Objective Set Covering Model for Emergency Medical Service Vehicle Deployment", Transportation Science, Vol. 15, No. 2, pp. 137-152, May. 1981. https://doi.org/10.1287/trsc.15.2.137
  2. R. Church and C. ReVelle, "The Maximal Covering Location Problem", Journal of Regional Science, Vol. 32, No. 1, pp. 101-118, Jan. 1974. https://doi.org/10.1007/BF01942293
  3. R. Z. Farahani and M. Hekmatfar, "Facility Location: Concepts, Models, Algorithms and Case Studies", Springer-Verlag Berlin Heidelberg, 2009.
  4. L Carsten and Y. Mihalis, "On the Hardness of Approximating Minimization Problems", Journal of the ACM, Vol. 41, No. 5, pp. 960-981, Sep. 1994. https://doi.org/10.1145/185675.306789
  5. V. Chvatal, "A Greedy Heuristic for the Set-Covering Problem", Mathematics of Operations Research, Vol. 4, No. 3, pp. 233-235, Aug. 1979. https://doi.org/10.1287/moor.4.3.233
  6. R. M. Karp, "Reducibility Among Combinatorial Problems", Complexity of Computer Computations, New York: Plenum, pp. 85-103, 1972.
  7. Wikipedia, "List of NP-complete Problems", http://en.wikipedia.org/wiki/List_of_NP-complete_problems, Wikipedia Foundation Inc., 2013.
  8. K. J. Devlin, "The Millennium Problems: The Seven Greatest Unsolved Mathematical Puzzles of Our Time", Basic Books. 2002.
  9. R. J. Vanderbei, "Linear Programming: Foundations and Extensions", 3rd ed., International Series in Operations Research & Management Science, Vol. 114, Springer Verlag, 2008.
  10. L. Dawei, L. Yanjie, and W. Li, "Model and Algorithms for Emergency Service Facility Location Problem", International Conference on Services Science, Management and Engineering (IITA), pp. 15-19, IEEE Computer Science, Jul. 2009.
  11. J. E. Storbeck and R. V. Vohra, "A Simple Trade-off Model for Maximal and Multiple Coverage", Geographical Analysis, Vol. 20, No. 3, pp. 220-230, Jul. 1988.
  12. D. Serra and C. ReVelle, "Surviving in a Competitive Spatial Market: The Threshold Capture Model", Journal of Regional Science, Vol. 39, No. 4, pp. 637-650, Feb. 1999. https://doi.org/10.1111/0022-4146.00153