DOI QR코드

DOI QR Code

Design Space Exploration of Embedded Many-Core Processors for Real-Time Fire Feature Extraction

실시간 화재 특징 추출을 위한 임베디드 매니코어 프로세서의 디자인 공간 탐색

  • Suh, Jun-Sang (School of Electrical Engineering, University of Ulsan) ;
  • Kang, Myeongsu (School of Electrical Engineering, University of Ulsan) ;
  • Kim, Cheol-Hong (School of Electronic and Computer Engineering, Chonnam National University) ;
  • Kim, Jong-Myon (School of Electrical Engineering, University of Ulsan)
  • 서준상 (울산대학교 전기공학부) ;
  • 강명수 (울산대학교 전기공학부) ;
  • 김철홍 (전남대학교 전자컴퓨터공학부) ;
  • 김종면 (울산대학교 전기공학부)
  • Received : 2013.02.08
  • Accepted : 2013.05.30
  • Published : 2013.10.31

Abstract

This paper explores design space of many-core processors for a fire feature extraction algorithm. This paper evaluates the impact of varying the number of cores and memory sizes for the many-core processor and identifies an optimal many-core processor in terms of performance, energy efficiency, and area efficiency. In this study, we utilized 90 samples with dimensions of $256{\times}256$ (60 samples containing fire and 30 samples containing non-fire) for experiments. Experimental results using six different many-core architectures (PEs=16, 64, 256, 1,024, 4,096, and 16,384) and the feature extraction algorithm of fire indicate that the highest area efficiency and energy efficiency are achieved at PEs=1,024 and 4,096, respectively, for all fire/non-fire containing movies. In addition, all the six many-core processors satisfy the real-time requirement of 30 frames-per-second (30 fps) for the algorithm.

본 논문에서는 많은 연산량이 요구되는 화재 특징 추출 알고리즘을 위한 최적의 매니코어 프로세서에 대한 디자인 공간을 탐색한다. 최적의 매니코어 디자인 공간을 선택하기 위해 매니코어를 구성하는 프로세서 엘리먼트 (PE)의 개수와 로컬 메모리 사이즈를 변화시키면서 시뮬레이션을 수행하여 성능, 에너지 효율 및 시스템 면적 효율에서 최적인 매니코어 구조를 결정한다. 본 논문에서는 $256{\times}256$ 해상도의 30 프레임으로 구성된 화재/비화재 비디오 영상을 대상으로 하여 움직임 검출, 색상 분할 및 이산 웨이블릿 변환으로 구성된 화재 특징 추출 알고리즘을 여섯가지 매니코어 구조(PEs=16, 64, 256, 1,024, 4,096, 16,384)를 사용하여 모의 실험한 결과, 모든 화재/비화재 비디오 영상에 대해1,024개와 4,096개의 PE를 갖는 매니코어 구조가 각각 최적의 시스템 면적 효율과 에너지 효율을 보였다. 또한, 실험에서 사용한 여섯가지 매니코어 구조 모두가 실시간 비디오 처리에서 요구되는 초당 30 프레임 처리 기준을 만족하였다.

Keywords

References

  1. B.Y. Lee, S.T. Park, S.H. Hong, and D.H. Baek, "A Study on the Fire Detection Algorithm for Early Fire Detection of Electrical Fire," 2009 The Korean Institute of Electrical Engineers Summer Conf., pp. 2162-2163, Muju Resort, Jeonbuk, 2009.
  2. K.H. Cheong, B.C. Ko, and J.Y. Nam, "Vision-Based Early Fire Detection System," Korean Society for Imaging Science & Technology, Vol. 13, No. 1, pp. 62-71, 2007.
  3. T.X. Truong, and J.-M. Kim, "An Effective Four-Stage Smoke-Detection Algorithm using Video Images for Early Fire-Alarm Systems," Fire Safety Journal, Vol. 46, No. 5, pp. 276-282, 2011. https://doi.org/10.1016/j.firesaf.2011.03.003
  4. S. Noda, and K. Ueda "Fire Detection in Tunnels Using an Image Processing Method," Vehicle Navigation and Information Systems Conf., pp. 57-62, Japan Highway Public Corp., Osaka, 1994.
  5. T. Nguyen, M. Kang, Y.-K. Kwon, and J.-M. Kim, "A Study on Effective Fire Detection Algorithm Combining Multiple Heterogeneous Methods", The 2012 International Conf. on Advanced Information Technology and Sensor Application, Vol. 1, No. 1, pp. 19, Sunshine Hotel, Daejeon, 2012.
  6. S.J. Ham, and B.C. Ko, "Fire-Flame Detection Using Fuzzy Finite Automata," Journal of The Korean Institute of Information Scientists and Engineers, Vol. 37, No. 9, pp. 712-721, Sept. 2010.
  7. S.H. Lee, "The Design and Implementation of Parallel Processing System using the $Nios^{(R)}$ II Embedded Processor," Journal of The Korea Society of Computer Information, Vol. 14, No. 11, pp. 97-103, Nov. 2009.
  8. N. Singhal, J.W. Yoo, H.Y. Choi, and I.K. Park, "Implementation and Optimization of Image Processing Algorithms on Embedded GPU," IEICE Trans. Inf. & Syst., Vol. E95-D, No. 5, pp. 1475-1484, May 2012. https://doi.org/10.1587/transinf.E95.D.1475
  9. I.K. Park, N. Singhal, M.H. Lee, S. Cho, and C.W. Kim, "Design and Performance Evaluation of Image Processing Algorithms on GPUs," IEEE Trans. on Parallel and Distributed Systems, Vol. 22, No. 1, pp. 91-104, Jan. 2011. https://doi.org/10.1109/TPDS.2010.115
  10. A. Gentile, and D.S. Wills, "Portable Video Supercomputing," IEEE Trans. on Computers, Vol. 53, No. 8, pp. 960-973, 2004. https://doi.org/10.1109/TC.2004.48
  11. T.X. Troung, and J.-M. Kim, "An Early Smoke Detection System based on Motion Estimation", Proceedings of the 5th International Forum on Strategic Technology, pp. 455-458, Ulsan, 2010.
  12. Y. Dedeoglu, B.U. Toreyin, U. Gudukbay, and A.E. Centin, "Real-Time Fire and Flame Detection in Video," IEEE International Conf. Acoustics, Speech, and Signal Processing, Vol. 2, pp. 669-672, Ankara, Turkey, 2005.
  13. J.-W. Choi, M. Kang, and J.-M. Kim, "Implementation of an Optimal SIMD-based Many-core Processor for Sound Synthesis of Guitar," Journal of The Korea Society of Computer Information, Vol. 17, No. 1, pp. 1-10, Jan. 2012. https://doi.org/10.9708/jksci.2012.17.1.001
  14. H.G. Lee, U.Y. Ogras, R. Marculescu, and N. Chang, "Design Space Exploration and Prototyping for On-chip Multimedia Applications," Proceedings of the 43rd Annual Design Automation Conf., pp. 137-142, 2006.
  15. G. Healey, D. Slater, T. Lin, B. Drda, A.D. Goedeke. "A system for real-time fire detection", IEEE Computer Vision and Pattern Recognition Conference (CVPR'93), 1993, pp.605-606.
  16. W. Phillips III, M. Shah, N. da Vitoria Lobo. "Flame Recognition in Video", in Proceedings of the Fifth IEEE Workshop on Applications of Computer Vision, 2000, pp. 224-229.
  17. C.B. Liu, N. Ahuja. "Vision based fire detection", in IEEE International Conference on Pattern Recognition, vol. 4, 2004, pp. 134-137.
  18. B.U. Toreyin, Y. Dedeoglu, U. Gudukbay, A.E. Cetin. "Computer vision based method for real-time fire and flame detection", Pattern Recognition Letters, 2005.
  19. B.U. Toreyin, Y. Dedeoglu, U. Gudukbay, A.E. Cetin. "Realtime Fire and Flame Detection in Video", International Conference on Acoustics, Speech, and Signal Processing (ICASSP'05), 2005.
  20. J. Zhu, Y. Liu, K. Bao, Y. Chang. "Realtime Simulation of Burning Solids on GPU with CUDA", Proceedings of the 2nd International Conference on Interaction Sciences, 2009, pp. 1335-1340.
  21. D. Xie, R. Tong, H. Wu. "Multi-channel video-based parallel fire detection acceleration method using multi-cores", in 2010 IEEE 10th International Conference on Computer and Information Technology (CIT), 2010, pp. 1219-1224.
  22. S.M. Chai, T. Taha, D.S. Wills, and J.D. Meindl, "Heterogeneous Architecture Models for Interconnect-Motivated System Design", IEEE Trans. on VLSI Systems, Vol. 8, No. 6, pp. 660-670, 2000. https://doi.org/10.1109/92.902260
  23. J.C. Eble, V.K. De, D.S. Wills, and J.D. Meindl, "A Generic System Simulator (GENESYS) for ASIC Technology and Architecture beyond 2001," The 9th Annual IEEE International ASIC Conf., pp. 193-196, 1996.
  24. Y.J. Hur, and S.H. Park, "A Unit-Based Volume Data Compression Scheme Using Daubechies D4 Wavelet Filter," HCI2006 Conference., pp. 1201-1206, Pheonixpark, Gangwon, 2006.
  25. D.H. Woo, and H.S. Lee, "Extending Amdahl's Law for Energy-Efficient Computing in the Many-Core Era," IEEE Computers, Vol. 41, No. 12, pp. 24-31, 2008.

Cited by

  1. 특이치 분해를 위한 최적의 2차원 멀티코어 시스템 탐색 vol.19, pp.9, 2013, https://doi.org/10.9708/jksci.2014.19.9.021
  2. 고속의 클러스터 추정을 위한 매니코어 프로세서의 디자인 공간 탐색 vol.19, pp.10, 2013, https://doi.org/10.9708/jksci.2014.19.10.001