DOI QR코드

DOI QR Code

Image Edge Detector Based on Analog Correlator and Neighbor Pixels

아날로그 상관기와 인접픽셀 기반의 영상 윤곽선 검출기

  • 이상진 (충북대학교 전자정보대학 정보통신공학과) ;
  • 오광석 (충북대학교 전자정보대학 정보통신공학과) ;
  • 남민호 (충북대학교 전자정보대학 정보통신공학과) ;
  • 조경록 (충북대학교 전자정보대학 정보통신공학과)
  • Received : 2013.08.19
  • Accepted : 2013.10.14
  • Published : 2013.10.28

Abstract

This paper presents a simplified hardware based edge detection circuit which is based on an analog correlator combining with the neighbor pixels in CMOS image sensor. A pixel element of the edge detector consists of an active pixel sensor and an analog correlator circuit which connects two neighbor pixels. The edge detector shares a comparator on each column that the comparator decides an edge of the target pixel with an adjustable reference voltage. The circuit detects image edge from CIS directly that reduces area and power consumption 4 times and 20%, respectively, compared with the previous works. And also it has advantage to regulate sensitivity of the edge detection because the threshold value is able to control externally. The fabricated chip has 34% of fill factor and 0.9 ${\mu}W$ of power per a pixel under 0.18 ${\mu}m$ CMOS technology.

본 논문에서는 하드웨어 기반의 영상 신호 윤곽선 검출을 위한 하드웨어기반의 알고리즘으로 CMOS 이미지 센서의 인접픽셀과 아날로그 상관기로 구성되는 윤곽선 검출기를 제안한다. 제안하는 이미지 윤곽 검출기는 각 열(column)마다 비교기를 공유하고, 비교기는 기준전압과 비교를 통해 대상 픽셀의 윤곽선 여부를 판별한다. 이미지 센서와 직접적으로 연결된 윤곽선 검출 회로는 기존의 연구와 비교하여 면적은 4배, 그리고 전력소모는 20 % 감소하는 결과를 보였다. 또한 외부에서 기준전압을 제어할 수 있어, 윤곽선 검출의 민감도를 조절하기에 유용한 장점을 가진다. 0.18 ${\mu}m$ CMOS 공정에서 제작된 칩은 34%의 fill factor를 가지며, 픽셀 당 0.9 ${\mu}W$의 전력소모를 가진다.

Keywords

References

  1. W. Xiao and X. Hui, "An Improved Canny Edge Detection Algorithm based on Predisposal Method for Image Corrupted by Gaussian Noise," World Automation Congress (WAC) 2010, pp.113-116, 2010(9).
  2. Y. Fan, G. Cui, and F. Lei, "Application of Edge Detection Algorithm Based on Morphology in Robot Vision System," International Conference on Intelligent Human-Machine Systems and Cybernetics 2009, Vol.1, pp.304-307, 2009(8).
  3. W. Gao, L. Yang, X. Zhang, B. Zhou, and C. Ma, "Based on Soft-threshold Wavelet De-noising Combining with Prewitt Operator Edge Detection Algorithm," 2nd International Conference on, Education Technology and Computer (ICETC) 2010, Vol.5, pp.155-162, 2010(6).
  4. R. Wang, Y. Xu, Libin, and Y. Zhao, "A Vision-based Road Edge Detection Algorithm," IEEE Intelligent Vehicle Symposium 2002, Vol.1, pp.141-147, 2002(6).
  5. M. Alipoor, Z. Ebrahimi, and J. Haddadnia, "A Novel Logarithmic Edge Detection Algorithm," Machine Vision and Image Processing (MVIP) 2010, pp.1-6, 2010(10).
  6. K. S. Oh, S. J. Lee, and K. Cho, "A Hardware Edge Detector of an Image based on a Bump Circuit and the Neighbor Pixels," IEEE Symposium on Low-Power and High-Speed Chips, COOL Chips XV, pp.18-20, 2012(4).
  7. 김희숙, 윤효순, Nguyen Dinh Toan, 유재명, 이귀상, "대각선 방향 픽셀에 기반한 이방성 확산을 이용한 영상 분할", 한국콘텐츠학회논문지, 제7권, 제2호, pp.21-29, 2007. https://doi.org/10.5392/JKCA.2007.7.2.021
  8. D. M. Wilson, "An Analog VLSI, Scale Invariant Method for Edge Detection," Analog Integrated Circuits and Signal Processing, Vol.23, pp.211-226, 2000. https://doi.org/10.1023/A:1008323730917
  9. C. Yin, "An Information Sensor with In-Pixel-Processing for Geriatric Nursing," IEEE Sensors 2011, pp.1503-1506, 2011(10).
  10. F. Faghih and M. Smith, "Combining Spatial and Scale-space Techniques for Edge Detection to Provide a Spatially Adaptive Wavelet-based Noise Filtering Algorithm," IEEE Trans. Image Processing, Vol.11, No.9, pp.1062-1071, 2002(9). https://doi.org/10.1109/TIP.2002.802526
  11. A. Gamal and H. Eltoukhy, "CMOS Image Sensors," IEEE Circuits and Devices Magazine, Vol.21, No.3, pp.6-20, May-Jun, 2005.
  12. T. Delbruck, "Bump Circuits for Computing Similarity and Dissimilarity of Analog Voltages," Proc. International Joint Conference on Neural Networks, Vol.1, pp.475-479, 1991.
  13. H. P. Wong, R. T. Chang, E. Crabbe and P. D. Agnello, "CMOS Active Pixel Image Sensors Fabricated using a 1.8-V, 0.25-$\mu{m}$ CMOS Technology," IEEE Trans. Electron Devices, Vol.45, No.4, pp.889-894, 1998(4). https://doi.org/10.1109/16.662797
  14. H. S. Wong and A. E. Gamal, Single Chip CMOS Imaging Systems, ISSCC Tutorial, 1999.
  15. S. Decker, R. McGrath, K. Brehmer, and C. Sodini, "A 256 ${\times}$ 256 CMOS Imaging Array with Wide Dynamic Range Pixels and Column Parallel Digital Output," IEEE J. Solid-State Circuits, Vol.33, pp.2081-2091, 1998(12). https://doi.org/10.1109/4.735551
  16. W. Jendernalik, J. Jakusz, G. Blakiewicz, R. Piotrowski, and S. Szczepanski, "CMOS Realisation of Analogue Processor for Early Vision Processing," Bulletin of the Polish Academy of Sciences, Technical Science, Vol.59, No.2, pp.141-147, 2011.