DOI QR코드

DOI QR Code

Effects of Trichostatin A on In vitro Development of Porcine Embryos Derived from Somatic Cell Nuclear Transfer

  • 투고 : 2013.01.11
  • 심사 : 2013.08.20
  • 발행 : 2013.12.01

초록

Many different approaches have been developed to improve the efficiency of animal cloning by somatic cell nuclear transfer (SCNT), one of which is to modify histone acetylation levels using histone deacetylase inhibitors (HDACi) such as trichostatin A (TSA). In the present study, we examined the effect of TSA on in vitro development of porcine embryos derived from SCNT. We found that TSA treatment (50 nM) for 24 h following oocyte activation improved blastocyst formation rates (to 22.0%) compared with 8.9% in the non-treatment group and total cell number of the blastocysts for determining embryo quality also increased significantly ($88.9{\rightarrow}114.4$). Changes in histone acetylation levels as a result of TSA treatment were examined using indirect immunofluorescence and confocal microscopy scanning. Results showed that the histone acetylation level in TSA-treated embryos was higher than that in controls at both acetylated histone H3 lysine 9 (AcH3K9) and acetylated histone H4 lysine 12 (AcH4K12). Next, we compared the expression patterns of seven genes (OCT4, ID1; the pluripotent genes, H19, NNAT, PEG1; the imprinting genes, cytokeratin 8 and 18; the trophoblast marker genes). The SCNT blastocysts both with and without TSA treatment showed lower levels of OCT4, ID1, cytokeratin 8 and 18 than those of the in vivo blastocysts. In the case of the imprinting genes H19 and NNAT, except PEG1, the SCNT blastocysts both with and without TSA treatment showed higher levels than those of the in vivo blastocysts. Although the gene expression patterns between cloned blastocysts and their in vivo counterparts were different regardless of TSA treatment, it appears that several genes in NT blastocysts after TSA treatment showed a slight tendency toward expression patterns of in vivo blastocysts. Our results suggest that TSA treatment may improve preimplantation porcine embryo development following SCNT.

키워드

참고문헌

  1. Adenot, P. G., Y. Mercier, J. P. Renard, and E. M. Thompson. 1997. Differential H4 acetylation of paternal and maternal chromatin precedes DNA replication and differential transcriptional activity in pronuclei of 1-cell mouse embryos. Development 124:4615-4625.
  2. Adjaye, J., J. Huntriss, R. Herwig, A. BenKahla, T. C. Brink, C. Wierling, C. Hultschig, D. Groth, M. L. Yaspo, H. M. Picton, R. G. Gosden, and H. Lehrach. 2005. Primary differentiation in the human blastocyst: comparative molecular portraits of inner cell mass and trophectoderm cells. Stem Cells 23:1514-1525. https://doi.org/10.1634/stemcells.2005-0113
  3. Armstrong, L., M. Lako, W. Dean, and M. Stojkovic. 2006. Epigenetic modification is central to genome reprogramming in somatic cell nuclear transfer. Stem Cells. 24:805-814. https://doi.org/10.1634/stemcells.2005-0350
  4. Chan, H. M., M. Krstic-Demonacos, L. Smith, C. Demonacos, and N. B. La Thangue. 2001. Acetylation control of the retinoblastoma tumour-suppressor protein. Nat. Cell Biol. 3: 667-674. https://doi.org/10.1038/35083062
  5. Cheung, P., C. D. Allis, and P. Sassone-Corsi. 2000. Signaling to chromatin through histone modifications. Cell 103:263-271. https://doi.org/10.1016/S0092-8674(00)00118-5
  6. Hong, L., G. P. Schroth, H. R. Matthews, P. Yau, and E. M. Bradbury. 1993. Studies of the DNA binding properties of histone H4 amino terminus. Thermal denaturation studies reveal that acetylation markedly reduces the binding constant of the H4 "tail" to DNA. J. Biol. Chem. 268:305-314.
  7. Horn, P. J. and C. L. Peterson. 2002. Molecular biology. Chromatin higher order folding--wrapping up transcription. Science 297:1824-1827. https://doi.org/10.1126/science.1074200
  8. Hyun, S., G. Lee, D. Kim, H. Kim, S. Lee, D. Nam, Y. Jeong, S. Kim, S. Yeom, S. Kang, J. Han, B. Lee, and W. Hwang. 2003. Production of nuclear transfer-derived piglets using porcine fetal fibroblasts transfected with the enhanced green fluorescent protein. Biol. Reprod. 69: 1060-1068. https://doi.org/10.1095/biolreprod.102.014886
  9. Iager, A. E., N. P. Ragina, P. J. Ross, Z. Beyhan, K. Cunniff, R. M. Rodriguez, and J. B. Cibelli. 2008. Trichostatin A improves histone acetylation in bovine somatic cell nuclear transfer early embryos. Cloning Stem Cells 10:371-379. https://doi.org/10.1089/clo.2007.0002
  10. Jankovic, V., A. Ciarrocchi, P. Boccuni, T. DeBlasio, R. Benezra, and S. D. Nimer. 2007. Id1 restrains myeloid commitment, maintaining the self-renewal capacity of hematopoietic stem cells. Proc. Natl. Acad. Sci. USA. 104:1260-1265. https://doi.org/10.1073/pnas.0607894104
  11. Kim, D. H., J. Lee, K. N. Kim, H. J. Kim, H. C. Jeung, H. C. Chung, and H. J. Kwon. 2007. Anti-tumor activity of N-hydroxy-7-(2-naphthylthio) heptanomide, a novel histone deacetylase inhibitor. Biochem. Biophys. Res. Commun. 356: 233-238. https://doi.org/10.1016/j.bbrc.2007.02.126
  12. Kim, J. M., H. Liu, M. Tazaki, M. Nagata, and F. Aoki. 2003. Changes in histone acetylation during mouse oocyte meiosis. J Cell Biol. 162:37-46. https://doi.org/10.1083/jcb.200303047
  13. Kirchhof, N., J. W. Carnwath, E. Lemme, K. Anastassiadis, H. Scholer, and H. Niemann. 2000. Expression pattern of Oct-4 in preimplantation embryos of different species. Biol. Reprod. 63:1698-1705. https://doi.org/10.1095/biolreprod63.6.1698
  14. Kishigami, S., E. Mizutani, H. Ohta, T. Hikichi, N. V. Thuan, S. Wakayama, H. T. Bui, and T. Wakayama. 2006. Significant improvement of mouse cloning technique by treatment with trichostatin A after somatic nuclear transfer. Biochem. Biophys. Res. Commun. 340:183-189. https://doi.org/10.1016/j.bbrc.2005.11.164
  15. Kishigami, S., N. Van Thuan, T. Hikichi, H. Ohta, S. Wakayama, E. Mizutani, and T. Wakayama. 2006. Epigenetic abnormalities of the mouse paternal zygotic genome associated with microinsemination of round spermatids. Dev. Biol. 289:195-205. https://doi.org/10.1016/j.ydbio.2005.10.026
  16. Kruhlak, M. J., M. J. Hendzel, W. Fischle, N. R. Bertos, S. Hameed, X. J. Yang, E. Verdin, and D. P. Bazett-Jones. 2001. Regulation of global acetylation in mitosis through loss of histone acetyltransferases and deacetylases from chromatin. J. Biol. Chem. 276:38307-38319.
  17. Lee, D. Y., J. J. Hayes, D. Pruss, and A. P. Wolffe. 1993. A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell. 72:73-84. https://doi.org/10.1016/0092-8674(93)90051-Q
  18. Lee, G. S., S. H. Hyun, H. S. Kim, D. Y. Kim, S. H. Lee, J. M. Lim, E. S. Lee, S. K. Kang, B. C. Lee, and W. S. Hwang. 2003. Improvement of a porcine somatic cell nuclear transfer technique by optimizing donor cell and recipient oocyte preparations. Theriogenology 59:1949-1957. https://doi.org/10.1016/S0093-691X(02)01294-3
  19. Li, E. 2002. Chromatin modification and epigenetic reprogramming in mammalian development. Nat. Rev. Genet. 3:662-673. https://doi.org/10.1038/nrg887
  20. Li, J., O. Svarcova, K. Villemoes, P. M. Kragh, M. Schmidt, I. B. Bogh, Y. Zhang, Y. Du, L. Lin, S. Purup, Q. Xue, L. Bolund, H. Yang, P. Maddox-Hyttel, and G. Vajta. 2008. High in vitro development after somatic cell nuclear transfer and trichostatin A treatment of reconstructed porcine embryos. Theriogenology 70: 800-808. https://doi.org/10.1016/j.theriogenology.2008.05.046
  21. Luo, J., F. Su, D. Chen, A. Shiloh, and W. Gu. 2000. Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature 408:377-381. https://doi.org/10.1038/35042612
  22. Mann, M. R., Y. G. Chung, L. D. Nolen, R. I. Verona, K. E. Latham, and M. S. Bartolomei. 2003. Disruption of imprinted gene methylation and expression in cloned preimplantation stage mouse embryos. Biol. Reprod. 69:902-914. https://doi.org/10.1095/biolreprod.103.017293
  23. Marks, P. A. 2004. The mechanism of the anti-tumor activity of the histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA). Cell Cycle 3:534-535. https://doi.org/10.4161/cc.3.5.827
  24. Martinez-Balbas, M. A., U. M. Bauer, S. J. Nielsen, A. Brehm, and T. Kouzarides. 2000. Regulation of E2F1 activity by acetylation. EMBO J. 19:662-671. https://doi.org/10.1093/emboj/19.4.662
  25. Mayer, W., A. Niveleau, J. Walter, R. Fundele, and T. Haaf. 2000. Demethylation of the zygotic paternal genome. Nature 403: 501-502.
  26. McBain, J. A., A. Eastman, C. S. Nobel, and G. C. Mueller. 1997. Apoptotic death in adenocarcinoma cell lines induced by butyrate and other histone deacetylase inhibitors. Biochem. Pharmacol. 53:1357-1368. https://doi.org/10.1016/S0006-2952(96)00904-5
  27. Medina, V., B. Edmonds, G. P. Young, R. James, S. Appleton, and P. D. Zalewski. 1997. Induction of caspase-3 protease activity and apoptosis by butyrate and trichostatin A (inhibitors of histone deacetylase): dependence on protein synthesis and synergy with a mitochondrial/cytochrome c-dependent pathway. Cancer Res. 57:3697-3707.
  28. Mie Lee, Y., S. H. Kim, H. S. Kim, M. Jin Son, H. Nakajima, H. Jeong Kwon, and K. W. Kim. 2003. Inhibition of hypoxia-induced angiogenesis by FK228, a specific histone deacetylase inhibitor, via suppression of HIF-1alpha activity. Biochem. Biophys. Res. Commun. 300:241-246. https://doi.org/10.1016/S0006-291X(02)02787-0
  29. Munster, P. N., T. Troso-Sandoval, N. Rosen, R. Rifkind, P. A. Marks, and V. M. Richon. 2001. The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces differentiation of human breast cancer cells. Cancer Res. 61: 8492-8497.
  30. Niemann, H., C. Wrenzycki, A. Lucas-Hahn, T. Brambrink, W. A. Kues, and J. W. Carnwath. 2002. Gene expression patterns in bovine in vitro-produced and nuclear transfer-derived embryos and their implications for early development. Cloning Stem Cells 4:29-38. https://doi.org/10.1089/153623002753632020
  31. O'Neill, L. P. and B. M. Turner. 1995. Histone H4 acetylation distinguishes coding regions of the human genome from heterochromatin in a differentiation-dependent but transcription-independent manner. EMBO J. 14:3946-3957.
  32. Reik, W., W. Dean, and J. Walter. 2001. Epigenetic reprogramming in mammalian development. Science 293:1089-1093. https://doi.org/10.1126/science.1063443
  33. Rougier, N., D. Bourc'his, D. M. Gomes, A. Niveleau, M. Plachot, A. Paldi, and E. Viegas-Pequignot. 1998. Chromosome methylation patterns during mammalian preimplantation development. Genes Dev. 12:2108-2113. https://doi.org/10.1101/gad.12.14.2108
  34. Shi, L. and J. Wu. 2009. Epigenetic regulation in mammalian preimplantation embryo development. Reprod. Biol. Endocrinol. 7:59. https://doi.org/10.1186/1477-7827-7-59
  35. Shi, L. H., Y. L. Miao, Y. C. Ouyang, J. C. Huang, Z. L. Lei, J. W. Yang, Z. M. Han, X. F. Song, Q. Y. Sun, and D. Y. Chen. 2008. Trichostatin A (TSA) improves the development of rabbit-rabbit intraspecies cloned embryos, but not rabbit-human interspecies cloned embryos. Dev. Dyn. 237:640-648. https://doi.org/10.1002/dvdy.21450
  36. Smith, C. M., Z. W. Haimberger, C. O. Johnson, A. J. Wolf, P. R. Gafken, Z. Zhang, M. R. Parthun, and D. E. Gottschling. 2002. Heritable chromatin structure: mapping "memory" in histones H3 and H4. Proc. Natl. Acad. Sci. USA. 99 (Suppl 4):16454-16461. https://doi.org/10.1073/pnas.182424999
  37. Spinaci, M., E. Seren, and M. Mattioli. 2004. Maternal chromatin remodeling during maturation and after fertilization in mouse oocytes. Mol. Reprod. Dev. 69:215-221. https://doi.org/10.1002/mrd.20117
  38. Tao, T., A. C. Boquest, Z. Machaty, A. L. Petersen, B. N. Day, and R. S. Prather. 1999. Development of pig embryos by nuclear transfer of cultured fibroblast cells. Cloning. 1: 55-62. https://doi.org/10.1089/15204559950020094
  39. Tse, C., T. Sera, A. P. Wolffe, and J. C. Hansen. 1998. Disruption of higher-order folding by core histone acetylation dramatically enhances transcription of nucleosomal arrays by RNA polymerase III. Mol. Cell. Biol. 18:4629-4638.
  40. Turner, B. M. 2000. Histone acetylation and an epigenetic code. Bioessays 22:836-845. https://doi.org/10.1002/1521-1878(200009)22:9<836::AID-BIES9>3.0.CO;2-X
  41. Vettese-Dadey, M., P. A. Grant, T. R. Hebbes, C. Crane- Robinson, C. D. Allis, and J. L. Workman. 1996. Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro. EMBO J. 15:2508-2518.
  42. Vodicka, P., K. Smetana, Jr., B. Dvorankova, T. Emerick, Y. Z. Xu, J. Ourednik, V. Ourednik, and J. Motlik. 2005. The miniature pig as an animal model in biomedical research. Ann. NY Acad. Sci. 1049:161- 171. https://doi.org/10.1196/annals.1334.015
  43. Vogelauer, M., L. Rubbi, I. Lucas, B. J. Brewer, and M. Grunstein. 2002. Histone acetylation regulates the time of replication origin firing. Mol. Cell. 10:1223-1233. https://doi.org/10.1016/S1097-2765(02)00702-5
  44. Wang, F., Z. Kou, Y. Zhang, and S. Gao. 2007. Dynamic reprogramming of histone acetylation and methylation in the first cell cycle of cloned mouse embryos. Biol. Reprod. 77: 1007-1016. https://doi.org/10.1095/biolreprod.107.063149
  45. Wee, G., D. B. Koo, B. S. Song, J. S. Kim, M. J. Kang, S. J. Moon, Y. K. Kang, K. K. Lee, and Y. M. Han. 2006. Inheritable histone H4 acetylation of somatic chromatins in cloned embryos. J. Biol. Chem. 281:6048-6057.
  46. Yoshida, M. and T. Beppu. 1988. Reversible arrest of proliferation of rat 3Y1 fibroblasts in both the G1 and G2 phases by trichostatin A. Exp. Cell Res. 177:122-131. https://doi.org/10.1016/0014-4827(88)90030-4
  47. Yoshida, M., S. Nomura, and T. Beppu. 1987. Effects of trichostatins on differentiation of murine erythroleukemia cells. Cancer Res. 47:3688-3691.
  48. Zhao, J., Y. Hao, J. W. Ross, L. D. Spate, E. M. Walters, M. S. Samuel, A. Rieke, C. N. Murphy, and R. S. Prather. 2010. Histone deacetylase inhibitors improve in vitro and in vivo developmental competence of somatic cell nuclear transfer porcine embryos. Cell Reprogram. 12:75-83. https://doi.org/10.1089/cell.2009.0038
  49. Zhao, J., J. W. Ross, Y. Hao, L. D. Spate, E. M. Walters, M. S. Samuel, A. Rieke, C. N. Murphy, and R. S. Prather. 2009. Significant improvement in cloning efficiency of an inbred miniature pig by histone deacetylase inhibitor treatment after somatic cell nuclear transfer. Biol. Reprod. 81:525-530. https://doi.org/10.1095/biolreprod.109.077016
  50. Zhao, J., J. Whyte, and R. S. Prather. 2010. Effect of epigenetic regulation during swine embryogenesis and on cloning by nuclear transfer. Cell Tissue Res. 341:13-21. https://doi.org/10.1007/s00441-010-1000-x

피인용 문헌

  1. Embryo Aggregation in Pig Improves Cloning Efficiency and Embryo Quality vol.11, pp.2, 2016, https://doi.org/10.1371/journal.pone.0146390
  2. Factors and molecules that could impact cell differentiation in the embryo generated by nuclear transfer vol.13, pp.4, 2017, https://doi.org/10.1080/15476278.2017.1389367
  3. Meiotic arrest as an alternative to increase the production of bovine embryos by somatic cell nuclear transfer vol.25, pp.01, 2017, https://doi.org/10.1017/S0967199416000289
  4. Does Porcine Oocytes Maturation in Vitro is Regulated by Genes Involved in Transforming Growth Factor Beta Receptor Signaling Pathway? vol.5, pp.1, 2017, https://doi.org/10.1515/acb-2017-0001
  5. Effect of Trichostatin-A on Embryons of Bovine Clones Modified Genetically with GFP vol.11, pp.25, 2018, https://doi.org/10.17485/ijst/2018/v11i25/128251
  6. 돼지 유도만능줄기세포 유래 복제란의 특성 분석 vol.34, pp.3, 2019, https://doi.org/10.12750/jarb.34.3.232
  7. Chaetocin Improves Pig Cloning Efficiency by Enhancing Epigenetic Reprogramming and Autophagic Activity vol.21, pp.14, 2020, https://doi.org/10.3390/ijms21144836