DOI QR코드

DOI QR Code

Genome-wide Association Study of Chicken Plumage Pigmentation

  • Park, Mi Na (Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration) ;
  • Choi, Jin Ae (Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration) ;
  • Lee, Kyung-Tai (Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration) ;
  • Lee, Hyun-Jeong (Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration) ;
  • Choi, Bong-Hwan (Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration) ;
  • Kim, Heebal (Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Tae-Hun (Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration) ;
  • Cho, Seoae (C&K genomics, Seoul National University Research Park) ;
  • Lee, Taeheon (Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Sciences, Seoul National University)
  • Received : 2013.07.10
  • Accepted : 2013.09.04
  • Published : 2013.11.01

Abstract

To increase plumage color uniformity and understand the genetic background of Korean chickens, we performed a genome-wide association study of different plumage color in Korean native chickens. We analyzed 60K SNP chips on 279 chickens with GEMMA methods for GWAS and estimated the genetic heritability for plumage color. The estimated heritability suggests that plumage coloration is a polygenic trait. We found new loci associated with feather pigmentation at the genome-wide level and from the results infer that there are additional genetic effect for plumage color. The results will be used for selecting and breeding chicken for plumage color uniformity.

Keywords

References

  1. Aulchenko, Y. S., S. Ripke, A. Isaacs, and C. M. van Duijn. 2007. GenABEL: an R library for genome-wide association analysis. Bioinformatics 23:1294-1296. https://doi.org/10.1093/bioinformatics/btm108
  2. Benjamini, Y. and Y. Hochberg. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Stat. Soc. 57:289-300.
  3. Blum, A., K. Hartmann and A. Rutten. 2010. Braunliche Verfarbung der linken Brustwarze bei einer 60-jahrigen Patientin. Der Hautarzt 61:64-68. https://doi.org/10.1007/s00105-009-1885-z
  4. Brawner III, W. R., G. E. Hill, and C. A. Sundermann. 2000. Effects of coccidial and mycoplasmal infections on carotenoid-based plumage pigmentation in male house finches. The Auk 117:952-963. https://doi.org/10.1642/0004-8038(2000)117[0952:EOCAMI]2.0.CO;2
  5. Gudbjartsson, D. F., P. Sulem, S. N. Stacey, A. M. Goldstein, T. Rafnar, B. Sigurgeirsson, K. R. Benediktsdottir, K. Thorisdottir, R. Ragnarsson, and S. G. Sveinsdottir. 2008. ASIP and TYR pigmentation variants associate with cutaneous melanoma and basal cell carcinoma. Nat. Genet. 40:886-891. https://doi.org/10.1038/ng.161
  6. Gunnarsson, U., A. R. Hellstrom, M. Tixier-Boichard, F. Minvielle, B. Bed'Hom, S. I. Ito, P. Jensen, A. Rattink, A. Vereijken, and L. Andersson. 2007. Mutations in SLC45A2 cause plumage color variation in chicken and Japanese quail. Genetics 175:867-877. https://doi.org/10.1534/genetics.106.063107
  7. Heo, K.-N., H.-J. Choo, B.- Y. Seo, M.-N. Park, K.-C. Jung, B.-J. Hwang, H.-K. Kim, E.-C. Hong, O.-S. Seo, and B.-S. Kang. 2011. Investigation of TYR and MC1R polymorphism in Korean native chickens and the commercial chickens. CNU J. Agr. Sci. 38:465-471.
  8. Ibarrola-Villava, M., H.-H. Hu, M. Guedj, L. P. Fernandez, V. Descamps, N. Basset-Seguin, M. Bagot, A. Benssussan, P. Saiag, and M. C. Fargnoli. 2012. MC1R, SLC45A2 and TYR genetic variants involved in melanoma susceptibility in Southern European populations: Results from a Meta-analysis. Eur. J. Cancer 48:2183-2191. https://doi.org/10.1016/j.ejca.2012.03.006
  9. Kerje, S., J. Lind, K. Schutz, P. Jensen, and L. Andersson. 2003. Melanocortin 1.receptor (MC1R) mutations are associated with plumage colour in chicken. Anim. Genet. 34:241-248. https://doi.org/10.1046/j.1365-2052.2003.00991.x
  10. Klungland, H. and D. Vage. 2000. Molecular genetics of pigmentation in domestic animals. Curr. Genomics 1:223-242. https://doi.org/10.2174/1389202003351364
  11. Liu, W., S. Chen, J. Zheng, L. Qu, G. Xu, and N. Yang. 2010. Developmental phenotypic-genotypic associations of tyrosinase and melanocortin 1 receptor genes with changing profiles in chicken plumage pigmentation. Poult. Sci. 89:1110-1114. https://doi.org/10.3382/ps.2010-00628
  12. Park, M.-N., E.-C. Hong, B.-S. Kang, H.-K. Kim, J.-H. Kim, S.-H. Na, H.-S. Chae, O.-S. Seo, J.-Y. Han, J.-H. Jeong, and B.-J. Hwang. 2010. Chemical composition and meat quality of crossbred Korean native chickens (KNC). Korean J. Poult. Sci. 37:415-421. https://doi.org/10.5536/KJPS.2010.37.4.415
  13. Purcell, S., B. Neale, K. Todd-Brown, L. Thomas, M. Ferreira, A. D. Bender, J. Maller, P. Sklar, P. I. De Bakker, and M. J. Daly. 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81:559-575. https://doi.org/10.1086/519795
  14. Shan, X., Y. Zhang, W. Peng, Z. Wang, and D. Xie. 2009. Molecular mechanism for jasmonate-induction of anthocyanin accumulation in Arabidopsis. J. Exp. Bot. 60:3849-3860. https://doi.org/10.1093/jxb/erp223
  15. Shao, P., J.-Y. Liao, D.-G. Guan, J.-H. Yang, L.-L. Zheng, Q. Jing, H. Zhou, and L.-H. Qu. 2012. Drastic expression change of transposon-derived piRNA-like RNAs and microRNAs in early stages of chicken embryos implies a role in gastrulation. RNA Biol. 9:212-227. https://doi.org/10.4161/rna.18489
  16. Tadano, R., M. Sekino, M. Nishibori, and M. Tsudzuki. 2007. Microsatellite marker analysis for the genetic relationships among Japanese long-tailed chicken breeds. Poult. Sci. 86:460-469. https://doi.org/10.1093/ps/86.3.460
  17. Tang, X.-F., Z. Zhang, D.-Y. Hu, A.-E. Xu, H.-S. Zhou, L.-D. Sun, M. Gao, T.-W. Gao, X.-H. Gao, and H.-D. Chen. 2012. Association analyses identify three susceptibility loci for vitiligo in the Chinese Han population. J. Invest. Dermatol. 133:403-410.
  18. Tsao, H., L. Chin, L. A. Garraway, and D. E. Fisher. 2012. Melanoma: from mutations to medicine. Genes Dev. 26:1131-1155. https://doi.org/10.1101/gad.191999.112
  19. Weston, A. and J. Sommerville. 2006. Xp54 and related (DDX6-like) RNA helicases: roles in messenger RNP assembly, translation regulation and RNA degradation. Nucleic Acids Res. 34:3082-3094. https://doi.org/10.1093/nar/gkl409
  20. Yang, J., S. H. Lee, M. E. Goddard, and P. M. Visscher. 2011. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88:76-82. https://doi.org/10.1016/j.ajhg.2010.11.011
  21. Zhou, X. and M. Stephens. 2012. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 44:821-824. https://doi.org/10.1038/ng.2310

Cited by

  1. Annotating long intergenic non-coding RNAs under artificial selection during chicken domestication vol.17, pp.1, 2017, https://doi.org/10.1186/s12862-017-1036-6
  2. The breeding history and commercial development of the Korean native chicken vol.73, pp.01, 2017, https://doi.org/10.1017/S004393391600088X
  3. Whole-Genome Sequencing of African Dogs Provides Insights into Adaptations against Tropical Parasites vol.35, pp.2, 2017, https://doi.org/10.1093/molbev/msx258
  4. Genome-wide association study for performance traits in chickens using genotype by sequencing approach vol.7, pp.1, 2017, https://doi.org/10.1038/srep41748
  5. Molecular-genetic bases of plumage coloring in chicken vol.23, pp.3, 2019, https://doi.org/10.18699/vj19.499
  6. Genome-Wide Analyses Identifies Known and New Markers Responsible of Chicken Plumage Color vol.10, pp.3, 2013, https://doi.org/10.3390/ani10030493
  7. Genome‐wide association study of body size traits in Wenshang Barred chickens based on the specific‐locus amplified fragment sequencing technology vol.92, pp.1, 2013, https://doi.org/10.1111/asj.13506