DOI QR코드

DOI QR Code

Analysis of RC walls with a mixed formulation frame finite element

  • Saritas, Afsin (Department of Civil Engineering, Middle East Technical University) ;
  • Filippou, Filip C. (Department of Civil and Environmental Engineering, University of California)
  • Received : 2012.06.11
  • Accepted : 2013.05.24
  • Published : 2013.10.25

Abstract

This paper presents a mixed formulation frame element with the assumptions of the Timoshenko shear beam theory for displacement field and that accounts for interaction between shear and normal stress at material level. Nonlinear response of the element is obtained by integration of section response, which in turn is obtained by integration of material response. Satisfaction of transverse equilibrium equations at section includes the interaction between concrete and transverse reinforcing steel. A 3d plastic damage model is implemented to describe the hysteretic behavior of concrete. Comparisons with available experimental data on RC structural walls confirm the accuracy of proposed method.

Keywords

References

  1. ACI Committee 318 (1989), Building Code Requirements for Reinforced Concrete (ACI 318-89), Detroit, American Concrete Institute.
  2. Bazant, Z.P. and Prat, P.C.(1988), "Microplane model for brittle-plastic material .1. Theory", J. Eng. Mech. ASCE, 114(10), 1672-1687. https://doi.org/10.1061/(ASCE)0733-9399(1988)114:10(1672)
  3. CEB (1991), CEB-FIP model code 1990 - final draft. Lausanne, CEB.
  4. Ceresa, P., Petrini, L., Pinho, R. and Sousa, R. (2009), "A fibre flexure-shear model for seismic analysis of RC-framed structures", Earthq. Struct. Dyn., 38(5), 565-586. https://doi.org/10.1002/eqe.894
  5. Feenstra, P.H. and De Borst, R. (1996), "A Composite plasticity model for concrete", Int. J. Solids Struct., 33(5), 707-730. https://doi.org/10.1016/0020-7683(95)00060-N
  6. Filippou, F.C. and Saritas, A. (2006), "A beam fnite element for shear-critical RC beams", ACI Spec. Publication., 37, 295-310.
  7. Friedman, Z. and Kosmatka, J.B. (1993), "An improved 2-Node timoshenko beam finite-element", Comput. Struct., 47(3), 473-481. https://doi.org/10.1016/0045-7949(93)90243-7
  8. Ghobarah, A. and Youssef, M. (1999), "Modelling of reinforced concrete structural walls", Eng. Struct., 21(10), 912-923. https://doi.org/10.1016/S0141-0296(98)00044-3
  9. Kazak, I. (2011), "Finite element analysis of shear-critical reinforced concrete walls", Comput. Concr., 8(2).
  10. Kotronis, P. and Mazars, J. (2005), "Simplified modelling strategies to simulate the dynamic behaviour of R/C walls", J. Earthq. Eng., 9(2), 285-306.
  11. La Borderie, C.L. (1991), Phenomenes unilateraux dans un materiau endommageable: modelisation etapplication a l'analyse des structures en beton, Universite Paris.
  12. Lee, H.S., Jeong, D.H. and Hwang, K.R. (2012), "Analytical simulation of reversed cyclic lateral behaviors of an RC shear wall sub-assemblage", Comput. Concr., 10(2).
  13. Lee, J. and Fenves, G.L. (1998), "Plastic-damage Model for Cyclic Loading of Concrete Structures", J. Eng. Mech. -ASCE, 124(8), 892-900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892)
  14. Lefas, I.D., Kotsovos, M.D. and Ambraseys, N.N. (1990), "Behavior of reinforced-concrete structural walls - strength, Deformation Characteristics, and Failure Mechanism", ACI Struct. J., 87(1), 23-31.
  15. Martinelli, L. (2008), "Modeling of shear-flexure interaction in reinforced concrete elements subjected to cyclic lateral loading", ACI Struct. J., 105(6), 675-684.
  16. Mazars, J. (1986), "A description of microscale and macroscale damage of concrete structures", Eng. Fract. Mech., 25(5-6), 729-737. https://doi.org/10.1016/0013-7944(86)90036-6
  17. Nakamura, H. and Higai, T. (2001), Compressive Fracture Energy and Fracture Zone Length of Concrete. Modeling of Inelastic Behavior of RC Structures under Seismic Loads. P.B. Shing and T. Tanabe, ASCE: 471-487.
  18. Navarro Gregori, J., Miguel Sosa, P., Fernandez Prada, M.A. and Filippou, F.C. (2007), "A 3d numerical model for reinforced and prestressed concrete elements subjected to axial, bending, shear and torsional loading", Eng. Struct., 29(12), 3404-3419. https://doi.org/10.1016/j.engstruct.2007.09.001
  19. Oller, S., Onate, E., Oliver, J. and Lubliner, J. (1990), "Finite element nonlinear analysis of concrete structures using a "plastic damage model", Eng. Fract. Mech., 35(1/2/3), 219-231. https://doi.org/10.1016/0013-7944(90)90200-Z
  20. Omidi, O. and Lotfi, V. (2010), "Numerical Analysis of Cyclically Loaded Concrete Under Large Tensile Strains by the Plastic-Damage Model" SCIENTIA IRANICA TRANSACTION A-CIVIL ENGINEERING, 17(3), 194-208.
  21. Orakcal, K. and Wallace, J.W. (2004), Modeling of Slender Reinforced Concrete Walls, Proceeding of the 13th World Conference on Earthquake Engineering, Vancouver.
  22. Petrangeli, M. (1999), "Fiber element for cyclic bending and shear of RC structures. II: Verification", J. Struct. Eng. ASCE, 125(9), 1002-1009.
  23. Petrangeli, M., Pinto, P.E. and Ciampi, V. (1999), "Fiber element for cyclic bending and shear of RC structures. I: Theory", J. Struct. Eng. ASCE, 125(9), 994-1001.
  24. Rericha, P. (1991), "Layer Model of Bending-Shear Failure in Rc Plates and Beams", J. Struct. Eng. ASCE, 117(10), 2865-2883. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:10(2865)
  25. Saritas, A. (2006), Mixed Formulation Frame Element for Shear Critical Steel and Reinforced Concrete Members, Ph.D. Dissertation, University of California, Berkeley.
  26. Saritas, A. and Filippou, F.C. (2009a), "Inelastic axial-flexure-shear coupling in a mixed formulation beam finite element", Int. J. Non-Linear Mech., 44(8), 913-922. https://doi.org/10.1016/j.ijnonlinmec.2009.06.007
  27. Saritas, A. and Filippou, F.C. (2009b), "Numerical integration of a class of 3d plastic-damage concrete models and condensation of 3d stress-strain relations for use in beam finite elements", Eng. Struct., 31(10), 2327-2336. https://doi.org/10.1016/j.engstruct.2009.05.005
  28. Saritas, A. and Soydas, O. (2012), "Variational base and solution strategies for nonlinear force-based beam finite elements", Int. J. Non-Linear Mech., 47, 54-64 https://doi.org/10.1016/j.ijnonlinmec.2012.01.003
  29. Spacone, E., Filippou, F.C. and Taucer, F.F. (1996), "Fiber beam-column model for nonlinear analysis of RC rrames: I: Formulation", Earthq. Eng. Struct. Dyn., 25(7), 711-725. https://doi.org/10.1002/(SICI)1096-9845(199607)25:7<711::AID-EQE576>3.0.CO;2-9
  30. Taylor, R.L., Filippou, F.C., Saritas, A. and Auricchio, F. (2003), "Mixed finite element method for beam and frame problems", Comput. Mech., 31(1-2), 192-203. https://doi.org/10.1007/s00466-003-0410-y
  31. Thomsen, J.H. and Wallace, J.W. (2004), "Displacement-based design of slender reinforced concrete structural walls-experimental verification", J. Struct. Eng.-ASCE, 130(4), 618-630. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:4(618)
  32. Valipour, H.R. and Foster, M.P. (2010), "A reinforced concrete frame element with shear effect", Struct. Eng. Mech., 36(1), 57-78. https://doi.org/10.12989/sem.2010.36.1.057
  33. Vecchio, F.J. and Collins, M.P. (1986), "The modified compression field theory for reinforced concrete elements subjected to shear", ACI Struct. J., 83(2), 219-231.
  34. Vecchio, F.J. and Shim, W. (2004), "Experimental and analytical reexamination of classic concrete beam tests", J. Struct. Eng.-ASCE, 130(3), 460-469. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:3(460)
  35. Vulcano, A. and Bertero, V.V. (1987), Analytical Models for Predicting The Lateral Response of R.C. Shear Walls: Evaluation of Their Reliability, UCB/EERC-87/19.

Cited by

  1. Three-dimensional elastoplastic damage concrete model by dissipation-based arc-length method vol.19, pp.12, 2016, https://doi.org/10.1177/1369433216649391
  2. The stress analysis of a shear wall with matrix displacement method vol.53, pp.2, 2015, https://doi.org/10.12989/sem.2015.53.2.205
  3. Softened Damage-Plasticity Model for Analysis of Cracked Reinforced Concrete Structures vol.144, pp.6, 2018, https://doi.org/10.1061/(ASCE)ST.1943-541X.0002015
  4. Cyclic behavior modeling of reinforced concrete shear walls based on softened damage-plasticity model vol.166, pp.None, 2013, https://doi.org/10.1016/j.engstruct.2018.03.085
  5. Finite element modelling approach for precast reinforced concrete beam-to-column connections under cyclic loading vol.174, pp.None, 2018, https://doi.org/10.1016/j.engstruct.2018.07.055