References
- Argyris, J., Tenek, L. and Olofsson, L. (1997), "TRIC: a simple but sophisticated 3-node triangular element based on 6 rigid-body and 12 straining modes for fast computational simulations of arbitrary isotropic and laminated composite shells", Comput. Methods Appl. Mech. Eng., 145, 11-85. https://doi.org/10.1016/S0045-7825(96)01233-9
- Argyris, J.H., Balmer, H., Doltsinis, J.S., Dunne, P.C., Haase, M., Kleiber, M., Malejannakis, G.A., Mlejnek, H.P., Muller, M. and Scharf, D.W. (1979), "Finite element method - the natural approach", Comput. Methods Appl. Mech. Eng., 17(18), 1-106.
- Argyris, J.H., Tenek, L. and Mattsson, A. (1998), "BEC: A 2-node fast converging shear-deformable isotropic and composite beam element based on 6 rigid-body and 6 straining modes", Comput. Methods Appl. Mech. Eng., 152, 281-336. https://doi.org/10.1016/S0045-7825(97)00144-8
- Armero, F. and Oller, S. (2000), "A general framework for continuum damage models. I. Infinitesimal plastic damage models in stress space", Int. J. Solids Struct., 37(48-50), 7409-7436. https://doi.org/10.1016/S0020-7683(00)00205-5
- Balan, T.A., Spacone, E. and Kwon, M. (2001), "A 3D hypoplastic model for cyclic analysis of concrete structures", Eng. Struct., 23(4), 333-342. https://doi.org/10.1016/S0141-0296(00)00048-1
- Barzegar, F. and Maddipudi, S. (1994), "Generating reinforcement in FE modeling of concrete structures", J. Struct. Eng., 120, 1656-1662. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:5(1656)
- Bathe, K.J. (1995), Finite Element Procedures, Prentice Hall Inc., Upper Saddle River, New Jersey, USA.
- Bažant, Z.P. and Oh, B.H. (1983), "Crack band theory for fracture of concrete", Mater. Construct., 16(3),155-177. https://doi.org/10.1007/BF02486267
- Bažant, Z.P. and Zdenek, P. (1983), "Comment on orthotropic models for concrete and Geomaterials", J. Eng. Mech., 109(3), 849-865. https://doi.org/10.1061/(ASCE)0733-9399(1983)109:3(849)
- Bertero, V.V., Aktan, A., Charney, F. and Sause, R. (1985), "Earthquake simulator tests and associated experimental analytical and correlation studies of one-fifth scale model", Earthq. Effects on Reinforced Concrete Structures, ACI, SP, Detroit, 375-424.
- Borja, R.I., Sama, K.M. and Sanz, P.F. (2003), "On the numerical integration of three-invariant elastoplastic constitutive models", Comput. Methods Appl. Mech. Eng., 192, 1227-1258. https://doi.org/10.1016/S0045-7825(02)00620-5
- Bresel, B. and Scordelis, A.C. (1963), Shear strength of reinforced concrete beams, ACI J., 60, 51-74.
- Cedolin, L. and Dei, P.S. (1977), "Finite element studies of shear-critical R/C beams", ASCE, J. Eng. Mech. Div., 103(3), 395-410.
- Cervenka, J. and Papanikolaou, V.K. (2008), "Three dimensional combined fracture-plastic material model for concrete", Int. J. Plasticity, 24(12), 2192-2220. https://doi.org/10.1016/j.ijplas.2008.01.004
- Cervenka, V. (1970), Inelastic finite element analysis of reinforced concrete panels under plane loads, Ph.D., University of Colorado, University Microfilms, Inc., Michigan.
- Cervenka, V., Jendele, L., Cervenka, J. (2008), ATENA program documentation. Part 1: Theory, Cervenka Consulting, Prague, Czech Republic.
- Cervera, M., Hinton, E. and Hassan, O. (1987), "Nonlinear Analysis of RC plate and shell structures using 20-noded isoparametric brick elements", Comput. Struct., 25, 845-869. https://doi.org/10.1016/0045-7949(87)90200-8
- Ciampi, V. and Nicoletti, M. (1986), "Parameter identification for cyclic constitutive models with stiffness and strength degradation", Procceding of the 8th European Conference on Earthquake Engineering, Lisbon.
- Clough, R.W., Benuska, K.L. and Wilson, E.L. (1965), "Inelastic earthquake response of tall buildings", Proceeding of the 3th World Conference on Earthquake Engineering, New Zealand, 11, New Zealand.
- Cotsovos,, D.M., Zeris, C.A. and Abas, A.A. (2009), "Finite Element Modeling of Structural Concrete", ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, COMPDYN 2009, Rhodes, Greece.
- Darwin, D. and Pecknold, D.A. (1976), "Analysis of RC shear panels under cyclic loading", J. Struct. Div., ASCE, 102(2), 355-369.
- Desmorat, R., Gatuingt, F. and Ragueneau, F. (2007), "Nonlocal anisotropic damage model and related computational aspects for quasi-brittle materials", Eng. Fracture Mech., 74(10), 1539-1560. https://doi.org/10.1016/j.engfracmech.2006.09.012
- Elwi, A.E. and Hrudey, T.M. (1989), "Finite element model for curved embedded reinforcement", J. Eng. Mech., 115, 740-754. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:4(740)
- Fardis, M.N., Alibe, B. and Tasoulas, J.L. (1983), "Monotonic and cyclic constitutive law for concrete", J. Eng. Mech., ASCE, 109, 516-536. https://doi.org/10.1061/(ASCE)0733-9399(1983)109:2(516)
- Girard, C. and Bastien, J. (2002), "Finite element bond slip model for concrete columns under cyclic loads", J. Struct. Eng., ASCE, 128, 1502-1510. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:12(1502)
- Gonzalez-Vidosa, F., Kotsovos, M.D. and Pavlovic, M.N. (1988), "On the numerical instability of the smeared-crack approach in the nonlinear modeling of concrete structures", Commun. Appl. Num. Meth. Engng, 4, 799-806. https://doi.org/10.1002/cnm.1630040614
- Gonzalez-Vidosa, F., Kotsovos, M.D. and Pavlovic, M.N. (1991), "A three-dimensional nonlinear finite-element model for structural concrete; Part 1: main features and objectivity study and Part 2: generality study", Proceedings of the Institution of Civil Engineers, Part 2, Research and Theory, 91, 517-544. https://doi.org/10.1680/iicep.1991.15628
- Hartl, H. and Handel, C.H. (2002), "3D finite element modeling of reinforced concrete structures", fib 2002, Osaka Congress, Japan.
- Ile, N. and Reynouard, J.M. (2000), "Nonlinear analysis of reinforced concrete shear wall under earthquake loading", J. Earthq. Eng., 4(2), 183-213.
- Jason, L., Huerta, A., Pijaudier-Cabot, G. and Ghavamian, S. (2006), "An elastic plastic damage formulation for concrete: Application to elementary tests and comparison with an isotropic damage model", Comput. Methods Appl. Mech. Eng., 195(52), 7077-7092. https://doi.org/10.1016/j.cma.2005.04.017
- Jendele, L. and Červenka, J. (2009), "On the solution of multi-point constraints - Application to FE analysis of reinforced concrete structures", Comput. Struct., 87, 970-980. https://doi.org/10.1016/j.compstruc.2008.04.018
- Jiràsek, M. and Rolshoven, S. (2003), "Comparison of integral-type nonlocal plasticity models for strain-softening materials", Int. J. Eng. Sci., 41, 1553-1602. https://doi.org/10.1016/S0020-7225(03)00027-2
- Kolleger, J. and Mehlhorn, G. (1987), "Material model for cracked reinforced concrete", IABSE Colloquium on Computational Mechanics of Concrete Structures-Advances and Applications, Delft, 63-74.
- Kotsovos, M.D. (1979), "A mathematical description of the strength properties of concrete under generalized stress", Mag. Concrete Res., 31(108), 151-158. https://doi.org/10.1680/macr.1979.31.108.151
- Kotsovos, M.D. (1983), "Effect of Testing Techniques on the Post-Ultimate Behavior of Concrete in Compression", Mater. Struct., RILEM, 16(91), 3-12.
- Kotsovos, M.D. (1984), "Concrete. A brittle fracturing material", RILEM Mater. Struct., 17, 107-115.
- Kotsovos, M.D. and Pavlovic, M.N. (1995), Structural concrete. Finite Element Analysis for Limit State Design, Thomas Telford, London.
- Kwak, H.G. and Kim, D.Y. (2001), "Nonlinear analysis of RC shear walls considering tension-stiffening effect", Comput. Struct., 79, 499-517. https://doi.org/10.1016/S0045-7949(00)00157-7
- Kwak, H.G. and Kim, D.Y. (2001), "Nonlinear analysis of RC shear walls considering tension-stiffening effect", Comput. Struct., 79, 499-517. https://doi.org/10.1016/S0045-7949(00)00157-7
- Kwak, H.G. and Kim, D.Y. (2004), "Material nonlinear analysis of RC shear walls subject to cyclic loadings", Eng. Struct., 26, 1423-1436. https://doi.org/10.1016/j.engstruct.2004.05.014
- Kwak, H.G. and Kim, D.Y. (2006), "Cracking behavior of RC panels subject to biaxial tensile stresses", Comput. Struct., 84, 305-317. https://doi.org/10.1016/j.compstruc.2005.09.020
- Kwan, W.P. and Billington, S.L. (2001), "Simulation of structural concrete under cyclic load", J. Struct. Eng., 127, 1391-1401. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:12(1391)
- Lee, J. and Fenves, G.L. (2001), "A return-mapping algorithm for plastic-damage models: 3D and plane stress formulation", Int. J. Numer. Methods Eng., 50(2), 487-506. https://doi.org/10.1002/1097-0207(20010120)50:2<487::AID-NME44>3.0.CO;2-N
- Lefas, I. (1988), Behavior of reinforced concrete walls and its implication for ultimate limit state design, Ph.D., University of London.
- Lefas, I.D. and Kotsovos, M.D. (1990), "Strength and deformation characteristics of reinforced concrete walls under load reversals", ACI Struct. J., 87(6), 716-726.
- Lubliner, J., Oliver, J., Oller, S. and Onate, E. (1989), "A plastic-damage model for concrete", Int. J. Solids Struct., 3, 299-326.
- Lykidis, G. (2007), Static and dynamic analysis of reinforced concrete structures with 3D finite elements and the smeared crack approach, Ph.D. Thesis, NTUA, Greece.
- Markou, G. (2010), ReConAn v1.00. Finite Element Analysis Software Manual, Institute of Structural Analysis and Seismic Research, Technical University of Athens, Greece.
- Markou, G. (2011), Detailed Three-Dimensional Nonlinear Hybrid Simulation for the Analysis of Large-Scale Reinforced Concrete Structures, Ph.D. Thesis, National Technical University of Athens.
- Markou, G. and Papadrakakis, M. (2012), "An efficient generation method of embedded reinforcement in hexahedral elements for reinforced concrete simulations", Adv. Eng. Soft. ADES, 45(1), 175-187. https://doi.org/10.1016/j.advengsoft.2011.09.025
- Mazars, J., Kotronis, P., Ragueneau, F. and Casaux, G. (2006), "Using multifiber beams to account for shear and torsion. Applications to concrete structural elements", Comput. Mathod Appl. Mech., 195, 7264-7281. https://doi.org/10.1016/j.cma.2005.05.053
- Mazars, J., Ragueneau, F., Casaux, G., Colombo, A. and Kotronis, P. (2004), "Numerical modeling for earthquake engineering: the case of lightly RC structural walls", Int. J. Numer. Anal. Methods Geom., 28, 857-874. https://doi.org/10.1002/nag.363
- Menegotto, M. and Pinto, P.E. (1973), "Method of analysis for cyclically loaded reinforced concrete plane frames Including changes in geometry and non-elastic behavior of elements under combined normal force and bending", Proceedings, IABSE Symposium on Resistance and Ultimate Deformability of Structures Acted on by Well Defined Repeated Loads, Lisbon.
- Mergos, P.E. and Kappos, A.J. (2008), "A distributed shear and flexural flexibility model with shear-flexure interaction for R/C members subjected to seismic loading", Earthq. Eng. Struct. Dyn., 37 1349-1370. https://doi.org/10.1002/eqe.812
- Mirzabozorg, H. and Ghaemian, M. (2005), "Nonlinear behavior of mass concrete in 3d problems using a smeared crack approach", Earthq. Eng. Struct. Dyn., 34, 247-269. https://doi.org/10.1002/eqe.423
- Mitchell, W.F. (1997), "A Fortran 90 Interface for OpenGL", NISTIR 5985.
- Navarro, G.J., Miguel, S.P., Fernandez, P.M.A. and Filippou, F.C. (2007), "A 3D numerical model for reinforced and prestressed concrete elements subjected to combined axial, bending, shear and torsion loading", Eng. Struct., 29, 3404-3419. https://doi.org/10.1016/j.engstruct.2007.09.001
- Nechnech, W., Meftah, F. and Reynouard, J.M. (2002), "An elasto-plastic damage model for plain concrete subjected to high temperatures", Eng. Struct., 24(5) 597-611.
- Oliver, J., Linero, D.L., Huespe, A.E. and Manzoli, O.L. (2008), "Two-dimensional modeling of material failure in reinforced concrete by means of a continuum strong discontinuity approach", Comput. Methods Appl. Mech. Eng., 197, 332-348. https://doi.org/10.1016/j.cma.2007.05.017
- Oliver, J. (1989), "Consistent characteristic length for smeared cracking models", Int. J. Numer. Methods Eng., 28(2), 461-474. https://doi.org/10.1002/nme.1620280214
- Ozbolt, J. and Li, Y.J. (2001), "Three dimensional cyclic analysis of compressive diagonal shear failure", Finite Element Anal. RC Struct., Eds. (Willam, K., Tanabe, T.), ACI, SP, 205(4) , 61-79.
- Papachristidis, A., Fragiadakis, M., and Papadrakakis, M. (2009), "A shear-deformable fiber beam-column element for seismic analysis of steel structures", Computational Methods in Structural Dynamics and Earthquake Engineering (COMPDYN), Rhodes.
- Papachristidis, A., Fragiadakis, M., and Papadrakakis, M. (2010), "A 3D fibre beam-column element with shear modeling for the inelastic analysis of steel structures", Comput. Mech., 45(6), 553-572. https://doi.org/10.1007/s00466-010-0470-8
- Papaioannou, I., Fragiadakis, M. and Papadrakakis, M. (2005), "Inelastic analysis of framed structures using the fiber approach", Proceeding of the 5th International Congress on Computational Mechanics, GRACM 05, Limassol, Cyprus, 1, 231-238.
- Papanikolaou, V.K. and Kappos, A.J. (2009), "Numerical study of confinement effectiveness in solid and hollow reinforced concrete bridge piers: Part 1: Methodology", Eng. Struct., 87(21-22), 1427-1439.
- Papanikolaou, V.K. and Kappos, A.J. (2009), "Numerical study of confinement effectiveness in solid and hollow reinforced concrete bridge piers: Part 2: Analysis results and discussion", Eng. Struct., 87(21-22), 1427-1439.
- Papanikolopoulos, K. (2003), Investigation of the non-linear behavior of reinforced concrete members with finite elements, Postgraduate Thesis, National Technical University of Athens, Athens.
- Park, H. and Kim, J.Y. (2005), "Hybrid plasticity model for reinforced concrete in shear", Eng. Struct., 27, 35-48. https://doi.org/10.1016/j.engstruct.2004.08.013
- Rashid, Y.M. (1968), "Ultimate strength analysis of prestressed concrete vessels", Nucl. Eng. Des., 7, 334-344. https://doi.org/10.1016/0029-5493(68)90066-6
- Saritas, A. and Filippou, F.C. (2009), "Numerical integration of a class of 3d plastic-damage concrete models and condensation of 3d stress-strain relations for use in beam finite elements", Eng. Stuct., 31(10), 2327-2336. https://doi.org/10.1016/j.engstruct.2009.05.005
- Sato, Y. and Naganuma, K. (2007), "Discrete-like crack simulation by smeared crack-based FEM for reinforced concrete", Earthq. Eng. Struct. Dyn., 36, 2137-2152. https://doi.org/10.1002/eqe.720
- Siemens PLM Software (2009), World-class finite element analysis (FEA) solution for the Windows desktop, Siemens Product Lifecycle Management Software Inc.
- Simo, J.C. and Ju, J.W. (1987), "Strain-based and stress-based continuum damage models.1. formulation", Int. J. Solids Struct., 23(7), 821-840. https://doi.org/10.1016/0020-7683(87)90083-7
- Spacone, E., Filippou, F.C. and Taucer, F.F. (1996), "Fibre beam-clumn model for nonlinear analysis of R/C frames Part I: formulation", Earthq. Eng. Struct. Dyn., 25, 711-725. https://doi.org/10.1002/(SICI)1096-9845(199607)25:7<711::AID-EQE576>3.0.CO;2-9
- Spiliopoulos, K.V. and Lykidis, G. (2006), "An efficient three-dimensional solid finite element dynamic analysis of reinforced concrete structures", Earthq. Eng. Struct. Dyn., 35, 137-157. https://doi.org/10.1002/eqe.510
- Takizawa, H. (1976), "Notes on some basic problems in inelastic analysis or planar RC structures", Trans. Arch. Inst. Japan, 240, Part I, 51-62, Part II, 65-77.
- Taucer, F.F., Spacone, E. and Filippou, F.C. (1991), A Fiber beam-column element for seismic response analysis of reinforced concrete structures, Report No. UCB/EERC-91/17, University of California, Berkeley.
- Van, Mier, J.G.M. (1986), "Multiaxial strain-softening of concrete", Mater. Struct., RILEM, 19(111), 179-200. https://doi.org/10.1007/BF02472034
- Van Mier, J.G.M., Shah, S.P., Arnaud, M., Balayssac, J.P., Bassoul, A., Choi, S., Dasenbrock, D., Ferrara, G., French, C., Gobbi, M.E., Karihaloo, B.L., Konig, G., Kotsovos, M.D., Labnz, J., Lange-Kornbak, D., Markeset, G., Pavlovic, M.N., Simsch, G., Thienel, K.C., Turatsinze, A., Ulmer M., van Vliet, M.R.A. and Zissopoulos, D. (1997), "Test methods for the strain-softening of concrete), Strain-softening of concrete in uniaxial compression", Mater. Struct., RILEM, 30(198), 195-209. https://doi.org/10.1007/BF02486177
- Viwathenatepa, S., Popov, E.P. and Bertero, V.V. (1979), Effects of Generalized Loadings on Bond of Reinforcing Bars Embedded in Confined Concreteblocks, Report to National Science Foundation, University of California Berkeley, California.
- Zeris, C.A. and Mahin, S. (1988), "Analysis of reinforced concrete beam-columns under uniaxial excitation", J. Struct. Eng., ASCE, 114(4), 804-820. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:4(804)
Cited by
- A computationally efficient model for the cyclic behavior of reinforced concrete structural members vol.141, 2017, https://doi.org/10.1016/j.engstruct.2017.03.012
- A simplified and efficient hybrid finite element model (HYMOD) for non-linear 3D simulation of RC structures vol.32, pp.5, 2015, https://doi.org/10.1108/EC-11-2013-0269
- A quantification of the modelling uncertainty of non-linear finite element analyses of large concrete structures vol.64, 2017, https://doi.org/10.1016/j.strusafe.2016.08.003
- Non-linear analysis of shear-critical reinforced concrete beams using the softened membrane model vol.16, pp.4, 2015, https://doi.org/10.1002/suco.201400093
- 3D nonlinear constitutive modeling for dynamic analysis of reinforced concrete structural members vol.199, 2017, https://doi.org/10.1016/j.proeng.2017.09.030
- Non-linear finite element analyses applicable for the design of large reinforced concrete structures 2017, https://doi.org/10.1080/19648189.2017.1348993
- Modelling the flexural behaviour of fibre reinforced concrete beams with FEM vol.99, 2015, https://doi.org/10.1016/j.engstruct.2015.05.028
- Towards a better understanding of the ultimate behaviour of LWAC in compression and bending vol.151, 2017, https://doi.org/10.1016/j.engstruct.2017.08.063
- 3D Finite Element Modeling of GFRP-Reinforced Concrete Deep Beams without Shear Reinforcement vol.15, pp.02, 2018, https://doi.org/10.1142/S0219876218500019
- Computing intersections between non-compatible curves and finite elements vol.56, pp.3, 2015, https://doi.org/10.1007/s00466-015-1181-y
- Computationally Efficient and Robust Nonlinear 3D Cyclic Modeling of RC Structures Through a Hybrid Finite Element Model (HYMOD) pp.1793-6969, 2019, https://doi.org/10.1142/S0219876218501256
- A numerical-experimental evaluation of beams composed of a steel frame with welded and conventional stirrups vol.22, pp.1, 2013, https://doi.org/10.12989/cac.2018.22.1.027
- Finite Element Analysis of RC Beams by the Discrete Model and CBIS Model Using LS-DYNA vol.2021, pp.None, 2013, https://doi.org/10.1155/2021/8857491
- Numerically Efficient Three-Dimensional Model for Non-Linear Finite Element Analysis of Reinforced Concrete Structures vol.14, pp.7, 2013, https://doi.org/10.3390/ma14071578
- New fundamental period formulae for soil-reinforced concrete structures interaction using machine learning algorithms and ANNs vol.144, pp.None, 2013, https://doi.org/10.1016/j.soildyn.2021.106656
- Finite element modelling of plain and reinforced concrete specimens with the Kotsovos and Pavlovic material model, smeared crack approach and fine meshes vol.30, pp.6, 2013, https://doi.org/10.1177/1056789520986601
- A new damage factor for seismic assessment of deficient bare and FRP-retrofitted RC structures vol.248, pp.None, 2021, https://doi.org/10.1016/j.engstruct.2021.113152