Acknowledgement
Supported by : Korea Institute of Energy Technology Evaluation and Planning (KETEP)
References
- Abdel-Jawad, Y.A. (2006), "The maturity method: Modifications to improve estimation of concrete strength at later ages", Construct. Build. Mater., 20(10), 893-900. https://doi.org/10.1016/j.conbuildmat.2005.06.022
- ACI Committee 318 (1999), Building Code Requirements for Reinforced Concrete and Commentary(ACI 318-99/318R-99/318M-99), American Concrete Institute.
- Alexander, K.M. and Taplin, J.H. (1962), "Concrete strength, cement hydration and the maturity rule", Aust. J. Appl. Sci., 13, 277-284.
- CEB-FIP (1993), CEB-FIP MODEL CODE 1990, Thomas Telford, London, England, 24-36
- Chanvillard, G. and D‟Aloia, A. (1997), "Concrete strength estimation at early ages: modification of the method of equivalent age", ACI Mater. J., 94(6), 520-530.
- Chengju, G. (1989), "Maturity of concrete: method for predicting early-stage strength", ACI Mater. J., 86(4), 341-353.
- Chu, I., Kwon, S.H., Amin, M.N. and Kim, J.K. (2012), "Estimation of temperature effects on autogenous shrinkage of concrete by a new prediction model", Constr. Build. Mater., 35, 171-182. https://doi.org/10.1016/j.conbuildmat.2012.03.005
- Freisleben Hansen, P. and Pedersen, E.J. (1997), "Maturity computer for controlled curing and hardening of concrete", Nordiska Betongfoerbundet, 21-25.
- Gardner, N.J. (1990), "Effect of temperature on the early-age properties of type I, type III, and type I/fly ash concrete", ACI Mater. J., 87(1), 68-78.
- Han, M.C. and Han, C.G. (2010), "Use of maturity methods to estimate the setting time of concrete containing super retarding agents, Cement Concrete Compos., 32(2), 164-172. https://doi.org/10.1016/j.cemconcomp.2009.11.008
- Jonasson, J.E. (1985), "Early Strength Growth in Concrete-Preliminary Test Results Concerning Hardening at Elevated Temperature", RILEM Symposium on Winter Concreting.
- Poole, J.L., Riding, K.A., Juenger, M.C.G., Folliard, K.J. and Schindler, A.K. (2011), "Effect of Chemical Admixtures on Apparent Activation Energy of Cementitious Systems", J. Mater. Civil Eng., 23(12), 1654-1661. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000345
- Kada-Benameur, H., Wirquin, E. and Duthoit, B. (2000), "Determination of apparent activation energy of concrete by isothermal calorimetry", Cement Concrete Res., 30(2), 301-305. https://doi.org/10.1016/S0008-8846(99)00250-1
- Kim, J.K.,Moon, Y.H. and Eo, S.H. (1998), "Compressive strength development of concrete with different curing time and temperature, Cement Concrete Res., 28(12), 1761-1773. https://doi.org/10.1016/S0008-8846(98)00164-1
- Kim, J.K., Han, S.H. and Lee, K.M. (2001), "Estimation of compressive strength by a new apparent activation energy function", Cement Concrete Res., 31(2), 217-255. https://doi.org/10.1016/S0008-8846(00)00481-6
- Kim, J.K., Han S.H. and Park, S.K. (2002), "Effect of temperature and aging on the mechanical properties of concrete Part II.Prediction model", Cement Concrete Res., 32(7), 217-255. https://doi.org/10.1016/S0008-8846(01)00662-7
- Kjellsen, K.O. and Detwiler, R.J. (1993), "Later ages strength prediction by a modified maturity method", ACI Mater. J., 90(3), 220-227.
- Lew, H.S. and Reichard.T.W. (1978), "Mechanical properties of concrete at early ages", ACI J., 75(10), 533-542.
- Neville, A.M. (1995), "Properties of Concrete", 4th ed., Longman, England, 666-674.
- Nielsen, C.V. (2007), "Modeling the Heat Development of Concrete Associated with Cement Hydration", ACI Spec. Publication, 241, 95-110.
- Riding, K.A., Poole, J.L., Folliard, K.J., Juenger, M.C.G. and Schindler, A.K. (2011), "New model for estimating apparent activation energy of cementitious systems", ACI Mater. J., 108(5), 550-557.
- Tank, R.C. and Carino, N.J. (1991), "Rate constant functions for strength development of concrete", ACI Mater. J., 88(1), 74-83.
- Tian, Y., Jin, X. and Jin, N. (2013), "Thermal cracking analysis of concrete with cement hydration model and equivalent age method", Comput. Concr., 11(4), 271-289. https://doi.org/10.12989/cac.2013.11.4.271
- Viviani, M., Glisic, B. and Smith, I.F.C. (2007), "Seperation of thermal and autogenous deformation at varying temperatures using optical fiber sensors", Cement Concrete Compos., 29(6), 435-447. https://doi.org/10.1016/j.cemconcomp.2007.01.005
- Waller, V., d'Aloiia, L., Cussigh, F. and Lecrux, S. (2004), "Using the maturity method in concrete cracking control at early ages", Cement Concrete Compos., 26(5), 589-599. https://doi.org/10.1016/S0958-9465(03)00080-5
- Wang, J., Yan, P. and Yu, H. (2007), "Apparent activation energy of concrete in early age determined by adiabatic test", Journal of Wuhan University of Technology-Materials Science Edition, 22(3), 537-541. https://doi.org/10.1007/s11595-006-3537-9
- Zhang, J., Cusson, D., Monteiro, P. and Harvey, J. (2008), "New perspectives on maturity and approach for high performance concrete applications", Cement Concrete Res., 38(12), 1438-1446. https://doi.org/10.1016/j.cemconres.2008.08.001
- Zou, X., Chao, A., Wu, N., Tian, Y., Yu, T.Y. and Wang, X.W. (2013), "A novel Fabry-Perot fiber optic temperature sensor for early age hydration heat study in Portland cement concrete sensor for early age hydration heat study in Portland cement concrete", Smart Struct. Syst., 12(1), 41-54. https://doi.org/10.12989/sss.2013.12.1.041
Cited by
- Experimental identification of box girder bridge model under undamaged and damaged conditions considering time effect vol.18, pp.6, 2016, https://doi.org/10.12989/cac.2016.18.6.827
- Concrete properties prediction based on database vol.16, pp.3, 2015, https://doi.org/10.12989/cac.2015.16.3.343
- Predicting the mechanical properties of ordinary concrete and nano-silica concrete using micromechanical methods vol.43, pp.12, 2018, https://doi.org/10.1007/s12046-018-0965-0
- Experimental identification of box girder bridge model under undamaged and damaged conditions considering time effect vol.18, pp.4, 2013, https://doi.org/10.12989/cac.2016.18.4.827
- Evaluation of multi-lane transverse reduction factor under random vehicle load vol.19, pp.6, 2017, https://doi.org/10.12989/cac.2017.19.6.725
- A Simplified Methodology for Condition Assessment of Bridge Bearings Using Vibration Based Structural Health Monitoring Techniques vol.21, pp.10, 2013, https://doi.org/10.1142/s0219455421501339