DOI QR코드

DOI QR Code

Tomography-based Finite Element Analysis for the Mechanical Behavior of Porous Titanium Manufactured by a Space Holder Method

Space holder 방법으로 제조된 다공질 타이타늄의 기계적 성질에 대한 Computed-Tomography를 이용한 유한요소해석

  • Lee, Dong Jun (Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Ahn, Dong-Hyun (Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Lee, Byounggab (Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Jeong, Jiwon (Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Oh, Sang Ho (Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Lee, Chong Soo (Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Kim, Hyoung Seop (Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH))
  • 이동준 (포항공과대학교 신소재공학과) ;
  • 안동현 (포항공과대학교 신소재공학과) ;
  • 이병갑 (포항공과대학교 신소재공학과) ;
  • 정지원 (포항공과대학교 신소재공학과) ;
  • 오상호 (포항공과대학교 신소재공학과) ;
  • 이종수 (포항공과대학교 신소재공학과) ;
  • 김형섭 (포항공과대학교 신소재공학과)
  • Received : 2013.08.01
  • Accepted : 2013.08.19
  • Published : 2013.10.28

Abstract

In this study, porous titanium samples were manufactured by space holder methods using two kinds of urea and sodium chloride space holders. Three-dimensional pore structures were obtained by a computed-tomography (CT) technique and utilized for finite element analysis in order to investigate the mechanical properties. The CT-based finite element analyses were in better agreement with the experimental results than unit cell model-based analyses. Both the experimental and CT-based results showed the same tendency that the elastic modulus decreased with increasing the porosities. The total porosity of the bulk body plays a key role in determining the elastic modulus of porous materials.

Keywords

References

  1. M. Long and H. J. Rack, Biomaterials, 19 (1998) 1621. https://doi.org/10.1016/S0142-9612(97)00146-4
  2. K. S. Katti, Colloids Surface. B, 39 (2004) 133. https://doi.org/10.1016/j.colsurfb.2003.12.002
  3. D. R. Sumner, T. M. Turner, R. Igloria, R. M. Urban and J. O. Galante, J. Biomech., 31 (1998) 909. https://doi.org/10.1016/S0021-9290(98)00096-7
  4. H. Weinans, D. R. Sumner, R. Igloria and R. N. Natarajan, J. Biomech., 33 (2000) 809. https://doi.org/10.1016/S0021-9290(00)00036-1
  5. I. H. Oh, N. Nomura, N. Masahashi and S. Hanada, Scripta Mater., 49 (2003) 1197. https://doi.org/10.1016/j.scriptamat.2003.08.018
  6. C. E. Wen, M. Mabuchi, Y. Yamada, K. Shimojima, Y. Chino and T. Asahina, Scripta Mater., 45 (2001) 1147. https://doi.org/10.1016/S1359-6462(01)01132-0
  7. C. E. Wen, M. Mabuchi, Y. Yamada, K. Shimojima, Y. Chino, H. Hosokawa and T. Asahina, J. Mater. Sci. Lett., 22 (2003) 1407. https://doi.org/10.1023/A:1025751128104
  8. M. Ozgur, R. L. Mullen and G. Welsch, Acta Mater., 44 (1996) 2115. https://doi.org/10.1016/1359-6454(95)00195-6
  9. N. Chawla, V. V. Ganesh and B. Wunsch, Scripta Mater., 51 (2004) 161. https://doi.org/10.1016/j.scriptamat.2004.03.043
  10. M. R. A. Kadir, A. Syahrom and A. Ochsner, Med. Biol. Eng. Comput., 48 (2010) 497. https://doi.org/10.1007/s11517-010-0593-2
  11. F. Fritzen, S. Forest, T. Bohlke, D. Kondo and T. Kanit, Int. J. Plast., 29 (2012) 102. https://doi.org/10.1016/j.ijplas.2011.08.005
  12. D. J. Lee, D. H. Ahn, E. Y. Yoon, S. I. Hong, S. Lee and H. S. Kim, Scripta Mater., 68 (2013) 893. https://doi.org/10.1016/j.scriptamat.2013.02.021
  13. S.-H. Joo, H. Kato, K. Gangwar, S. Lee and H. S. Kim, Intermetallics, 32 (2013) 21. https://doi.org/10.1016/j.intermet.2012.08.013
  14. S.-H. Joo, J. K. Lee, J. M. Koo, S. Lee, D. W. Suh and H. S. Kim, Scripta Mater., 68 (2013) 245. https://doi.org/10.1016/j.scriptamat.2012.10.025
  15. Z. Esen and S. Bor, Scripta Mater., 56 (2007) 341. https://doi.org/10.1016/j.scriptamat.2006.11.010

Cited by

  1. Additive manufacturing of porous metals using laser melting of Ti6Al4V powder with a foaming agent vol.5, pp.8, 2018, https://doi.org/10.1088/2053-1591/aad117