DOI QR코드

DOI QR Code

Determination of Volatile Flavor Compounds during Storage of Cereal Added Yogurt using HS-SPME

곡류 첨가 발효유의 저장 중 HS-SPME를 이용한 휘발성 향기성분 정량분석

  • Lim, Chan-Mook (Department of Animal Products and Food Science, Kangwon National University) ;
  • Jhoo, Jin-Woo (Department of Animal Products and Food Science, Kangwon National University) ;
  • Kim, Gur-Yoo (Department of Animal Products and Food Science, Kangwon National University)
  • 임찬묵 (강원대학교 동물식품응용과학과) ;
  • 주진우 (강원대학교 동물식품응용과학과) ;
  • 김거유 (강원대학교 동물식품응용과학과)
  • Received : 2013.05.21
  • Accepted : 2013.09.27
  • Published : 2013.10.31

Abstract

In this study, quantitative analysis of major volatile flavor compounds from yogurt was conducted using headspace-solid phase microextraction (HS-SPME) GC-FID analysis technique, and the changes of volatile aroma compounds during the storage period were evaluated. The yogurt was prepared with the addition of 2% cereals, such as, white rice (WR), brown rice (BR), germinated brown rice (GBR) and saccharified germinated brown rice (SGBR). After fermentation, the products were stored at $5^{\circ}C$for 15 d. The major volatile aroma compounds in yogurt, such as acetaldehyde, acetone, diacetyl and acetoin were able to be extracted using HS-SPME technique efficiently. The regression ($r^2$) value of standard curve prepared with various concentrations of individual flavor chemicals was analyzed over 0.9975, and reproducibility was acceptable to apply quantitative analysis. The analysis of volatile components of control sample during storage showed that the acetaldehyde on 0 d was 10.83 ppm, and that contents were increased to 15.67 ppm after 15 d of storage. However, addition of BR, GBR and SGBR decreased the acetaldehyde contents during storage periods. The acetone content of all treatments during storage was not significantly different. The diacetyl content of all treatments were increased during storage and the addition of SGBR showed the highest amount of diacetyl (0.84 ppm) among treatments on 15 d of storage. The acetoin content of yogurt added with grains was higher than that of control during storage. As a result, the content of volatile aroma compounds in yoghurt during storage period could be analyzed HS-SPME extraction technique effectively, and HS-SPME/GC analysis can be considered for quality control of fermented milk products.

본 연구에서는 발효유의 휘발성 향기성분을 HS-SPME/GC-FID를 이용하여 정량분석의 가능성을 검토하고, 정량 분석의 재현성 및 정확성을 확인하여 발효유의 휘발성 향기성분 연구에 접목시키고자 실험을 실시하였다. HS-SPME를 이용하여 발효유의 acetaldehyde, acetone, diacetyl 그리고 acetoin 등의 향기성분 추출 시 $35^{\circ}C$에서 가장 효과적으로 추출할 수 있었다. 그리고 발효유의 주요 휘발성 향기성분의 표준물질을 농도별로 제조하여 standard curve를 작성하여 상관관계식을 얻을 수 있었으며, $r^2$값은 모든 표준시료에서 0.9979 이상으로 뛰어난 상관관계를 나타냈다. 곡류(백미, 현미, 발아현미, 발아현미당화)를 첨가한 발효유를 제조하여 저장기간 중 휘발성 향기성분의 함량변화를 비교분석하였다. Acetaldehyde의 경우 대조구 및 백미첨가 발효유는 저장기간 중 acetaldehyde의 함량이 약 1.4배 증가하였다. 현미와 발아현미, 그리고 발아현미 당화액을 첨가한 발효유의 경우 저장 0일차 acetaldehyde의 함량이 11.78, 12.39, 12.15 ppm으로 대조구의 0일차 함량(10.83 ppm)보다 높은 함량을 나타냈지만, 저장 15일차에는 acetaldehyde 함량이 각각 11.96, 13.04, 12.10 ppm으로 대조구의 15일차 함량(15.67 ppm)보다 약 1.3배 낮은 함량을 나타냈다. Acetone은 매우 미량으로 분석되었고, 저장기간 중 생성 또는 휘발되어 유의적인 차이는 없었다(p<0.05). 대조구 및 백미첨가발효유의 diacetyl 함량은 저장기간 중 약 2배 증가하였고, 현미와 발아현미, 그리고 발아현미 당화액 첨가 발효유의 경우 저장 0일차 함량이 각각 0.74, 0.81, 0.84 ppm으로 대조구 및 백미첨가발효유의 함량(0.35, 0.48 ppm)보다 높게 분석되었다. Acetoin 함량은 곡류를 첨가한 발효유에서 대조구보다 전체적으로 높은 함량을 나타냈고, 대조구 및 백미첨가발효유의 경우 저장기간 중 유의적인 변화를 보이지 않았으며(p<0.05), 현미와 발아현미 그리고 발아현미 당화액 첨가 발효유는 저장기간 중 감소하는 경향을 나타냈다. HS-SPME/GC를 이용하여 곡류를 첨가한 발효유의 저장 기간 중 휘발성 향기성분의 변화를 정량 분석한 결과 재현성이 뛰어났으며, 개별 향기성분의 분석도 가능하였다. 따라서 발효유의 휘발성 향기성분을 고가의 장비를 사용하지 않고 간편하고 효율적으로 추출할 수 있는 HS-SPME/GC를 이용하여 정량분석이 가능할 것으로 판단되며, 발효유의 휘발성 향기성분 분석 및 제조 및 품질특성에 관한 기초 연구 시 경제적이고 효율적으로 이용가능할 것으로 판단된다.

Keywords

References

  1. Adda, J. (1986) Flavour of dairy products. In:Developments in Food Flavours. Birch, G. G. and Lindley, M. G. (eds) Elsevier Applied Science, London, pp. 151-172.
  2. Allaoua, A., Joyce Irene, B., and Youness, Z. (2006) Identification of volatile compounds in soymilk using solid-phase microextraction-gas chromatography. Food Chem. 99, 759-766. https://doi.org/10.1016/j.foodchem.2005.09.001
  3. Belardi, R. andPawliszyn, J. (1989) The application of chemically modified fused silica fibers in the extraction of organics from water matrix samples and their rapid transfer to capillary columns. Water Pollut. Res. J. Can. 24, 179-191.
  4. Beshkova, D., Simova, E., Frengova, F. and Simov, Z. (1998) Production of flavor compounds by yogurt starter cultures. J. Ind. Microbiol. Biotechnol. 20, 180-186. https://doi.org/10.1038/sj.jim.2900504
  5. Buchholz, K. D. and Pawliszyn, J. (1994) Optimization of solid-phase microextractionconditions for determination of phenols. Anal. Chem. 66, 160-167. https://doi.org/10.1021/ac00073a027
  6. Cavalli, J. F., Fernandez, X., and Lizzani-Cuvelier, L. (2004) Characterization of volatile compounds of French and Spanish virgin olive oils by HS-SPME identification of quality-freshness markers. Food Chem. 88, 151-157 https://doi.org/10.1016/j.foodchem.2004.04.003
  7. Cha, Y. J. (1997) Fat as a source of food flavor and flavor analysis technology. Food Sci. Ind. 30, 49-64.
  8. Contarini, G. and Povolo, M. (2002)Volatile fraction of milk: Comparison between purge and trap and solid phase microextraction techniques. J. Agr. Food Chem. 50, 7350-7355. https://doi.org/10.1021/jf025713a
  9. Frank, J. F. and Marth, E. H. (1988) Fermentations. In: Fundamentals of dairy chemistry. Wong, N.P. (ed), Van nostrand Reinhold Co., New York, pp. 684 -738.
  10. Gonzalez, S., Morata de Ambrosini, V., Manca de Nadra, M., Pesce de Ruiz Holgado, A., and Oliver, G. (1994) Acetaldehyde production by strain used as probiotic in fermented milk. J. Food Prot. 57, 436-440. https://doi.org/10.4315/0362-028X-57.5.436
  11. Jang, Y. J., Kim, S. H., Kwak, B. M., Ahn, J. H., and Kong, U. Y. (2005) Analysis of volatile flavor compounds in cow's milk by purge & trap method. Korean J. Food Sci. An. 25, 78-83.
  12. Jelen, H. H., Obuchowska, M., Wojtasiak, R. Z., and Wausowicz, E. (2000) Headspace solid-phase microextraction use for the characterization of volatile compounds in vegetable oils of different sensory quality. J. Agr. Food Chem. 48, 2360-2367. https://doi.org/10.1021/jf991095v
  13. Jia, M. Y., Zhang, Q. H., and Min, D. B. (1998) Optimization of solid-phase microextraction analysis for headspace flavor compounds of orange Juice. J. Agr. Food Chem. 46, 2744-2747. https://doi.org/10.1021/jf971020w
  14. Kataoka, H., Lord, H. L., and Paelisazyn, J. (2000) Applications of solid-phase microextraction in food analysis. J. Choromatogr. A. 880: 35-62. https://doi.org/10.1016/S0021-9673(00)00309-5
  15. Kim, D. H., Choi, J. W., and In, M. J. (2011) Utilization of Leuconostocmesenteroides 310-12 strain in the fermentation of a traditional Korean rice-based beverage. J. Appl. Biol. Chem. 54, 21-25. https://doi.org/10.3839/jabc.2011.004
  16. Kim, K. H. and Ko, Y. T. (1993) Volatile aroma compounds of yogurt from milk and cereals. Korean J. Food Sci. Technol. 25, 136-141.
  17. Kim, S. B. and Lim, J. W. (2000) Studies on the manufacture of adlay Yoghurt, II. The Volatile flavor compounds and the sensory properties of adlay Yoghurt. Korean J. Food Sci. An. 20, 64-71.
  18. Ko, Y. T., Kim, T. E., and Kang, J. H. (2001) Volatile aroma compounds in Ice cream prepared from lactic fermented egg white food added with cream. Korean J. Food Sci. Technol. 33, 373-377.
  19. Ko, Y. T. and Kim, K. H. (1995) Growth and acid production by Leuconostocmesenteroides in milk added with cereal and analysis of several volatile flavor compounds. Korean J. Food Sci. Technol. 11, 316-322.
  20. Ko, Y. T. and Kyung, H. M. (1995) Changes in acid production, sensory properties of yogurt and volatile aroma compounds during lactic fermentation in milk added with egg white powder. Korean J. Food Sci. Technol. 27, 612-617.
  21. Ko, Y. T. and Lee, E. J. (1996) The preparation of yogurt from egg white powder and casein. Korean J. Food Sci. Technol. 28, 337-344.
  22. Lee, C. B. (2005) Studies on the fermentation properties of yogurt added sprouted brown rice. M.S. thesis, Hankyung National Univ, Gyeonggi-do, Korea.
  23. Marshall, V. (1984) Flavour development in fermented milks. In: Advances in the microbiology and biochemistry of cheese and fermented milk. Davies, F,L. and Law, B.A.(eds), Elsevier Applied Science Publishers, London, pp.153-186.
  24. Park, S. G. (1991) What is the study of smell, and how to do? Part 1 What is the study of food products, and go to do? Food Sci. Ind. 24, 88-94.
  25. Park, S. G. (1992) What is the study of smell, and how to do? Part 2 Research methods of fragrance precise analytical. Food Sci. Ind. 25, 48-64
  26. Rasic, F. and Kurmann, J. (1978) Flavour and aroma in yogurt. In: Yogurt scientific grounds, technology, manufacture and preparations. Rasic, J. and Kurmann, J. (eds) Copenhagen, Denmark: Tech. Dairy Publ House Distributors. pp. 90-98.
  27. Raya, R. R., Manca de Nadra, M. C., Pesce de Ruiz Holgado, A. and Oliver, G. (1986) Acetaldehyde metabolism in latic acid bacteria. Milchwissenschaft 41, 397-399.
  28. Rysstad, G. and Abrahamsen, R. K. (1987) Formation of volatile compounds and carbon dioxide in yogurt starter growth in cows' and goats' milk. J. Dairy Res. 54, 247. https://doi.org/10.1017/S0022029900025383
  29. Ulberth, F. and Roubicek, D. (1995) Monitoring of oxidative deterioration of milk powder by headspace gas chromatography. Int. Dairy J. 5, 523-531. https://doi.org/10.1016/0958-6946(94)00031-J
  30. Werkhoff, P. and Bretschneider, W. (1987) Dynamic headspace gas chromatography: concentration of volatile components after thermal desorption by intermediate cryofocusing in a cold trap. J. Chromatogr. 405, 87-98. https://doi.org/10.1016/S0021-9673(01)81750-7

Cited by

  1. Antioxidant activity and flavor compounds of hickory yogurt vol.20, pp.8, 2017, https://doi.org/10.1080/10942912.2016.1223126
  2. HS-SPME/GC-MS를 이용한 천연물 열수추출물 처리 돼지 막창의 휘발성 및 반휘발성 물질 분석 vol.33, pp.2, 2013, https://doi.org/10.7841/ksbbj.2018.33.2.118