DOI QR코드

DOI QR Code

A Numerical Study on the Strain Based Monitoring Method for Lateral Structural Response of Buildings using FBG Sensors

FBG를 이용한 변형률 기반 건물의 횡방향 구조반응 모니터링 기법에 관한 해석적 연구

  • Choi, Se Woon (Department of Architectural Engineering, Yonsei University) ;
  • Park, Keunhyoung (Department of Architectural Engineering, Yonsei University) ;
  • Kim, Yousok (Department of Architectural Engineering, Yonsei University) ;
  • Park, Hyo Seon (Department of Architectural Engineering, Yonsei University)
  • Received : 2013.07.01
  • Accepted : 2013.07.30
  • Published : 2013.08.30

Abstract

In this study, the strain based monitoring method to evaluate the lateral structural response of buildings is presented and an applicability of the proposed method is confirmed through the numerical study. It is assumed that the fiber Bragg grating(FBG) strain sensor is employed to measure the strain response of members due to the excellent properties such as multiplexing, and higher sampling frequency. These properties of FBG sensors is proper for buildings the a lot of sensors are required to monitor the reponses of those. FBG sensors measure the strain response of vertical members and are employed to calculate the curvatures of members using the measured strain responses. Then the lateral displacement, and lateral acceleration is evaluated based on the curvatures of vertical members. Additionally, these dynamic responses of buildings are used to evaluate the dynamic properties of buildings such as the natural frequencies and mode shapes using the frequency domain decomposition(FDD) method. Through the application of nine-story steel moment frame example structure, it is confirmed that the proposed method is appropriate to evaluate the lateral structural responses and dynamic properties of buildings.

본 논문에서는 건물의 횡방향 구조반응을 평가하기 위한 변형률 기반의 모니터링 기법이 제시되고, 이에 대한 기초 연구로써, 구조해석을 통해 제안된 기법을 검증한다. 광섬유 격자 센서(fiber Bragg grating, FBG)는 일반 변형률 센서와 비교하여 내구성이 뛰어날 뿐 아니라 높은 샘플링 수와 여러 지점을 동시에 계측할 수 있는 장점이 있다. 이러한 특성 때문에 FBG 센서는 구조 모니터링을 위해 많은 센서가 요구되는 건물의 모니터링에 적합하다. 본 연구에서 FBG 센서는 수직 부재의 변형률을 계측하며, 이는 해당 부재의 곡률을 평가한다. 이러한 곡률은 횡변위와 횡가속도를 평가하는데 사용된다. 추가적으로 횡방향 가속도는 frequency domain decomposition(FDD) 기법을 이용하여 구조물의 고유진동수와 모드형상을 추정하는데 사용된다. 9층 철골모멘트 골조 예제의 적용을 통해, 제시된 기법이 건물의 다양한 횡방향 구조 반응과 동적 특성을 평가하는데 적절함을 확인하였다.

Keywords

References

  1. Brincker, R., Zhang, L., Andersen, P. (2001) Modal Identification of Output-only Systems Using Frequency Domain Decomposition, Smart Materials and Structures, 10, pp.441-445. https://doi.org/10.1088/0964-1726/10/3/303
  2. Chang, S.J., Kim, N.S. (2008) Estimation of Displacement Response from the Measured Dynamic Strain Signals Using Mode Decomposition Technique, KSCE Journal of Civil Engineering, 28(4A), pp.507-515.
  3. Choi, E.S., Kang, D.H., Chung, W.S., Kim, H.S. (2006) Estimation of Dynamic Displacement and Characteristics of A Simple Beam from FBG Sensor Signals, Journal of Korean Society of Steel Construction, 18(4), pp.503-514.
  4. Choi, S.W., Park, H.S. (2012) Multi-objective Seismic Design Method for Ensuring Beam-hinging Mechanism in Steel Frames, Journal of Constructional Steel Research, 74, pp.17-25. https://doi.org/10.1016/j.jcsr.2012.01.012
  5. Gilat, A., Subramaniam, V. (2013) Numerical Methods for Engineers and Scientists, John Wiley.
  6. Kang, L.H., Kim, D.K, Han, J.H. (2007) Estimation of Dynamic Structural Displacements Using Fiber Bragg Grating Strain Sensors, Journal of Sound and Vibration, 305, pp.534-542. https://doi.org/10.1016/j.jsv.2007.04.037
  7. Kim, J.T., Ryu, Y.S., Cho, H.M., Stubbs, N. (2003) Damage Identification in Beam-type Structures: Frequency-based Method vs Mode-shape-based Method, Engineering Structures, 25, pp.57-67. https://doi.org/10.1016/S0141-0296(02)00118-9
  8. Kim, N.S., Cho, N.S. (2002) Estimation of Bridge Deflection Using Fiber Optic Bragg-grating Sensors, KSCE Journal of Civil Engineering, 22(6A), pp.1357-1366.
  9. Lee, H.M. (2010) Development of An Integrated Structural Health Monitoring System to Ensure the Safety and Serviceability of High-rise Buildings, Ph.D. Thesis, Department of Architectural Engineering, Yonsei University.
  10. Lee, H.M., Kim, J.M., Sho, K., Park, H.S. (2010) A Wireless Vibrating Wire Sensor Node for Continuous Structural Health Monitoring, Smart Materials and Structures, doi:10.1088/0964-1726/19/5/055004.
  11. Lee, H.M., Park, H.S. (2009) Estimation of the Maximum Stress of a Beam-Column Based on Average Strains from Vibrating Wire Strain Gages, Proceeding of Architectural Institute of Korea, 29(1), pp.17-20.
  12. Lee, S.Y., Noh, M.H. (2010) Performance Assessment Using the Inverse Analysis Based a Function Approach of Bridges Repaired by ACM from Incomplete Dynamic Data, Journal of Korean Society for Advanced Composite Structures, 1(2), 51-58.
  13. Li H.N., Li, D.S., Song, G.B. (2004) Recent Application of Fiber Optic Sensors to Health Monitoring in Civil Engineering, Engineering Structures, 26, pp.1647-1657. https://doi.org/10.1016/j.engstruct.2004.05.018
  14. Majumder, M., Gangopadhyay, T.K., Chakraborty, A.K., Dasgupta, K., Bhattacharya, D.K. (2008) Fibre Bragg Gratings in Structural Health Monitoring- Present Status and Applications, Sensors and Actuators A: Physical, 147, pp.150-164. https://doi.org/10.1016/j.sna.2008.04.008
  15. Mazzoni, S., Mckenna, F., Fenves, G.L. (2006) OpenSees Command Language Manual(http://opensees. berkeley.edu/index.php).
  16. Park, J.W., Lee, J.J., Jung, H.J., Myung, H. (2010) Vision-based Displacement Measurement Method for High-rise Building Structures Using Partitioning Approach, NDT&E International, 43, pp.642-647. https://doi.org/10.1016/j.ndteint.2010.06.009
  17. Park, K.T., Kim, S.H., Park, H.S., Lee, K.W. (2005) The Determination of Bridge Displacement Using Measured Acceleration, Engineering Structures, 27, pp.371-378. https://doi.org/10.1016/j.engstruct.2004.10.013