References
- Ackerman AL, Cresswell P (2004). Cellular mechanisms governing cross-presentation of exogenous antigens. Nature Immunology, 5, 678-84. https://doi.org/10.1038/ni1082
- Aidan M, Ulrich K, Charles, et al (2009). T-cell epitope prediction: rescaling can mask biological variation between MHC molecules. PLoS Comput Biol, 5, 1000327. https://doi.org/10.1371/journal.pcbi.1000327
- Agarwal SM, Raghav D, Singh H, et al (2011). CCDB: a curated database of genes involved in cervix cancer. Nucleic Acids Res, 39, 975-9. https://doi.org/10.1093/nar/gkq1024
- Agnieszka K, Grabowska, Riemer AB (2012). The invisible enemy-how human papillomaviruses avoid recognition and clearance by the host immune system. Open Virol J, 6, 249-56. https://doi.org/10.2174/1874357901206010249
- Alessia M, Marco T, Nello C (2009). Support vector machines. wiley interdisciplinary reviews: computation stat. Computational Statistics, 1, 283-9. https://doi.org/10.1002/wics.49
- Altschul S, Madden T, Schaffer A, et al (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res, 25, 3389-402. https://doi.org/10.1093/nar/25.17.3389
- Androphyl EJ, Hubbert NL, Schiller JT, et al (1987). Identification of the HPV-16 E6 protein from transformed mouse cells and human cervical carcinoma cell lines. EMBO J, 6, 989-92.
- Bernard HU, Burk RD, Chen Z, et al (2010). Classification of Papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology, 401, 70-9. https://doi.org/10.1016/j.virol.2010.02.002
- Bian H, Olson JFR, Hammer J (2003). The use of bioinformatics for identifying class II-restricted T-cell epitopes. Methods, 29, 299-309. https://doi.org/10.1016/S1046-2023(02)00352-3
- Boccardo E, Lepique AP, Luisa L (2010). The role of inflammation in HPV carcinogenesis. Carcin, 31, 1905-12. https://doi.org/10.1093/carcin/bgq176
- Brusic V, Bajic VB, Petrovsky N (2004). Computational methods for prediction of T-cell epitopes-a framework for modeling, testing, and applications. Method, 34, 436-43. https://doi.org/10.1016/j.ymeth.2004.06.006
- Chandra S, Singh TR (2012). Linear B cell epitope prediction for epitope vaccine design against meningococcal disease and their computational validations through physicochemical properties. Netw Model Anal Health Inform Bioinforma, 1, 153-9. https://doi.org/10.1007/s13721-012-0019-1
- Cole ST, Danos O (1987). Nucleotide sequence and comparative analysis of the human papillomavirus type 18 genome. Phylogeny of papillomavirus and repeated structure of the E6 and E7 gene products. J Mol Bio, 193, 599-608. https://doi.org/10.1016/0022-2836(87)90343-3
- De Groot A S (2004). Immunome derived vaccine. Expert Opin Biol Ther, 4, 767-72. https://doi.org/10.1517/14712598.4.6.767
- Delius H, Hofmann B (1994). Primer-directed sequencing of human papillomavirus types. Curr Top Microbial Immunol, 186, 13-31.
- De Sanjose S, Quint WGV, Alemany L, et al (2010). Human papillomavirus genotype attribution in invasive cervical cancer: a retrospective cross-sectional worldwide study. Lancet Oncol, 11, 1048-56. https://doi.org/10.1016/S1470-2045(10)70230-8
- Dimitrov I, Garnev P, Flower DR (2010). EpiTop-a proteochemometric tool for MHC class II binding prediction. Bioinformatics, 26, 2066-8. https://doi.org/10.1093/bioinformatics/btq324
- Doytchinova IA, Guan P, Flower DR (2006). EpiJen: a server for multistep T cell epitope prediction. BMC Bioinformatics, 7, 131. https://doi.org/10.1186/1471-2105-7-131
- Engelhard VH (1994). How cells process antigens. Sci Am, 271, 54-61.
- Fakhry C, Gillison ML (2006). Clinical implications of human papillomavirus in head and neck cancers. J Clin Oncol, 24, 2606-11. https://doi.org/10.1200/JCO.2006.06.1291
- Flower DR, Phadwal K, Macdonald IK, et al (2010). T-cell epitope prediction and immune complex simulation using molecular dynamics: state of the art and persisting challenges. Immunome Res, 6, 2-4. https://doi.org/10.1186/1745-7580-6-2
- Frazer IH (2004). Prevention of cervical cancer through papillomavirus vaccination. Nature Rev Immun, 4, 46-54. https://doi.org/10.1038/nri1260
- Gallagher KME, Man S (2007). Identification of HLA-DR1- and HLA-DR15-restricted human papillomavirus type 16 (HPV16) and HPV18 E6 epitopes recognized by CD4+ T cells from healthy young women. J General Virology, 88, 1470-8. https://doi.org/10.1099/vir.0.82558-0
- Gnanamony M, Peedicayil A, Abraham P (2007). An overview of Human Papillomavirus and current vaccine strategies. Indian J Med Microbiol, 25, 10-17. https://doi.org/10.4103/0255-0857.31055
- Govan VA (2008). A novel vaccine for cervical cancer: quadrivalent human papillomavirus (types 6, 11, 16 and 18) recombinant vaccine (Gardasil). Ther Clin Risk Manage, 4, 65-70.
- Hakenberg J, Nussbaum A, Schild H, et al (2003). MAPPP-MHC-I antigenic peptide processing prediction. Appl Bioinformatics, 2, 155-8.
- Hellberg S, Sjostrom M, Skagerberg B, et al (1987). Peptide quantitative structure-activity relationships, a multivariate approach. J Med Chem, 30, 1126-35. https://doi.org/10.1021/jm00390a003
- Holzhutter HG, Frommel C, Kloetzel PM (1999). A theoretical approach towards the identification of cleavage-determining amino acid motifs of the 20 S proteasome. J Mol Bio, 286, 1251-65. https://doi.org/10.1006/jmbi.1998.2530
- Iurescia S, Fioretti D, Fazio VM, et al (2012). Epitope-driven DNA vaccine design employing immunoinformatics against B-cell lymphoma: a biotech's challenge. Biotechnol Adv, 30, 372-83. https://doi.org/10.1016/j.biotechadv.2011.06.020
- Jacob AG, Hansen NC, Vinther J, et al. (2003). A promoter within the E6 ORF of human papillomavirus type 16 contributes to the expression of the E7 oncoprotein from a monocistronic mRNA. J Gen Virol, 84, 3429-41. https://doi.org/10.1099/vir.0.19250-0
- Jones DT (1999). Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol, 292, 195-202. https://doi.org/10.1006/jmbi.1999.3091
- Kavitha KV, Saritha R, Vinod Chandra SS (2013). Computational methods in linear b-cell epitope prediction. Int J Comput Appl, 63, 28-32.
- Khan HA, Arif IA, Bahkali AH, et al (2008). Bayesian, maximum parsimony and UPGMA models for inferring the phylogenies of antelopes using mitochondrial markers. Evol Bioinform Online, 4, 263-70.
- Koichiro T, Joel D, Masatoshi N, et al (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol, 24, 1596-9. https://doi.org/10.1093/molbev/msm092
- Larkin MA, Blackshields G, Brown NP, et al (2007). Clustal w and clustal X version 2.0. Bioinformatics, 23, 2947-48. https://doi.org/10.1093/bioinformatics/btm404
- Lapinsh M, Prusis P, Gutcaits A, et al (2001). Development of proteochemometrics: A novel technology of use for analysis of drug-receptor interactions. Biochim Biophys Acta, 1525, 180-90. https://doi.org/10.1016/S0304-4165(00)00187-2
- Lin SY, Cheng CW, Su ECY (2013). Prediction of B-cell epitopes using evolutionary information and propensity scales. BMC Bioinformatics, 14, 2-10. https://doi.org/10.1186/1471-2105-14-2
- Longworth MS, Laimins LA (2004). Pathogenesis of human papillomaviruses in differentiating epithelia. Microbiol Mol Biol R, 68, 362-72. https://doi.org/10.1128/MMBR.68.2.362-372.2004
- Lundegaard C, Lamberth K, Harndah M, et al (2008). NetMHC-3.0: Accurate web accessible predictions of human, mouse, and monkey MHC class i affinities for peptides of length 8-11. Nucleic Acids Res, 36, 509-12. https://doi.org/10.1093/nar/gkn202
- Ma B, Xu Y, Hung CF, et al (2010). HPV and Therapeutic Vaccines: Where are we in 2010? Curr Cancer Ther Rev, 6, 81-103. https://doi.org/10.2174/157339410791202583
- Ma B, Roden R, Wu TC (2010). Current status of HPV vaccines. J Formos Med Assoc, 109, 481-3. https://doi.org/10.1016/S0929-6646(10)60081-2
- Mark HE, Suzanne L, Lydia GC (2009). Genetic variants in TAP are associated with high-grade cervical neoplasia. Clin Cancer Res, 15, 1019-23. https://doi.org/10.1158/1078-0432.CCR-08-1207
- Morrow MP, Yan J, Sardesai NY (2013). Human papillomavirus therapeutic vaccines: targeting viral antigens as immunotherapy for precancerous disease and cancer. Expert Rev Vaccines, 12, 271-83. https://doi.org/10.1586/erv.13.23
- Munger K, Howley PM (2002). Human papillomavirus immortalization and transformation functions. Virus Res, 89, 213-28. https://doi.org/10.1016/S0168-1702(02)00190-9
- Nakagawa M, Kim KH, Moscicki AB (2004). Different methods of identifying new antigenic epitopes of human papillomavirus type 16 E6 and E7 Proteins. Clin Diagn Lab Immun, 11, 889-96.
- Nakagawa M, Kim KH, Gillam TM, et al (2007). HLA class I binding promiscuity of the CD8 T-Cell epitopes of human papillomavirus type 16 E6 protein. J Virol, 81, 1412-23. https://doi.org/10.1128/JVI.01768-06
- Nielsen M, Lundegaard C, Woming P, et al (2003). Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci, 12, 1007-17. https://doi.org/10.1110/ps.0239403
- Nielsen M, Lundegaard C, Woming P, et al (2004). Improved prediction of MHC class I and II epitopes using a novel Gibbs sampling approach. Bioinformatics, 20, 1388-97. https://doi.org/10.1093/bioinformatics/bth100
- Oyarzun P, Ellis JJ, Boden M, et al (2013). PREDIVAC: CD4+ T-cell epitope prediction for vaccine design that covers 95% of HLA class II DR protein diversity. BMC Bioinformatics, 14, 52. https://doi.org/10.1186/1471-2105-14-52
- Patronov A, Doytchinova I (2013). T-cell epitope vaccine design by immunoinformatics. Open Biol, 3, 120139. https://doi.org/10.1098/rsob.120139
- Peters B, Sidney J, Bourne P, et al (2005). The design and implementation of the immune epitope database and analysis resource. Immunogenetics, 57, 326-36. https://doi.org/10.1007/s00251-005-0803-5
- Pingping S, Wenhan C, Yanxin H, et al (2011). Epitope prediction based on random peptide library screening: benchmark dataset and prediction tools evaluation. Molecules, 16, 4971-94. https://doi.org/10.3390/molecules16064971
- Rudolf MP, Man S, Melief CJM, et al (2001). Human T-Cell responses to HLA-A-restricted high binding affinity peptides of human papillomavirus type 18 proteins E6 and E7. Clin Cancer Res, 7, 788-95.
- Saha S, Raghava GPS (2006). Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins, 65, 40-8. https://doi.org/10.1002/prot.21078
- Seedorf K, Krammer G, Durst M, et al (1985). Human papillomavirus type 16 DNA sequence. Virology, 145, 181-5. https://doi.org/10.1016/0042-6822(85)90214-4
- Sette A, Sidney J, Oseroff C, et al (1993). HLA DR4w4-binding motifs illustrate the biochemical basis of degeneracy and specificity in peptide-DR interactions. J Immunol, 151, 3163-70.
- Shehzadi A, Rehman SU, Idrees M, (2011). Promiscuous prediction and conservancy analysis of CTL binding epitopes of HCV 3a viral proteome from Punjab Pakistan: an In-silico approach. Virol J, 8, 55. https://doi.org/10.1186/1743-422X-8-55
- Smith KL, Tristram A, Gallagher KM, et al (2004). Epitope specificity and longevity of a vaccine-induced human T cell response against HPV18. Int Immunol, 17, 167-76. https://doi.org/10.1093/intimm/dxh197
- Soliman PT, Slomovitz BM, Wolf JK (2004). Mechanisms of cervical cancer. Drug Discovery today: Disease mechanism, 1, 253-8.
- Sirskyj D, Mitoma FD, Golshani A, et al (2011). Innovative bioinformatic approaches for developing peptide-based vaccines against hypervariable viruses. Immunol Cell Biol, 89, 81-9. https://doi.org/10.1038/icb.2010.65
- Sudandiradoss C, George Priya Doss C, Rajasekaran R, et al (2008). Analysis of binding residues between scorpion neurotoxins and D2 dopamine receptor: a computational docking study. Comput Biol Med, 38, 1056-67. https://doi.org/10.1016/j.compbiomed.2008.08.003
- Stanley MA (2009). Immune responses to human papilloma viruses. Indian J Med Res, 130, 266-76.
- The Universal protein resource (Uniprot) in 2010. Nucleic Acids Res, 38, 142-8.
- Tomar N, De RK (2010). Immunoinformatics: an integrated scenario. Immunol, 131, 153-68. https://doi.org/10.1111/j.1365-2567.2010.03330.x
- Tong JC, Tan TW, Shoba R (2006). Methods and protocols for prediction of immunogenic epitopes. Briefings in Bioinformatics, 8, 96-108. https://doi.org/10.1093/bib/bbl038
- Tumban E, Peabody J, Peabody DS, et al (2011). A pan-HPV vaccine based on bacteriophage PP7 VLPs displaying broadly cross-neutralizing epitopes from the HPV minor capsid protein, L2. PLoS One, 6, 23310. https://doi.org/10.1371/journal.pone.0023310
- Waldmann TA (2003). Immune responses to human Papilloma viruses. Nat Med, 9, 269-77. https://doi.org/10.1038/nm0303-269
-
Walshe VA, Hattotuwagama CK, Doytchinova IA, et al (2009). Integrating in silico and in vitro analysis of peptide binding affinity to HLA-
$Cw^{\ast}0102$ : a bioinformatic approach to the prediction of new epitopes. PLoS One, 4, 8095. https://doi.org/10.1371/journal.pone.0008095 - Whelan S, Lio P, Goldman N (2001). Molecular phylogenetics: state-of-art methods for looking into the past. Trends Genet, 17, 262-72. https://doi.org/10.1016/S0168-9525(01)02272-7
- Wu CY, Monie A, Pang X, Hung CF, Wu TC (2010). Improving therapeutic HPV peptide-based vaccine potency by enhancing CD4+ T help and dendritic cell activation. J Biomed Sci, 17, 88-97. https://doi.org/10.1186/1423-0127-17-88
- Yao B, Zheng D, Liang S, et al (2013). Conformational B-Cell epitope prediction on antigen protein structures: a review of current algorithms and comparison with common binding site prediction methods. PLoS One, 8, 62249 https://doi.org/10.1371/journal.pone.0062249
- Yasser ELM, Dobbs D, Honavar V (2008). Predicting linear B-cell epitopes using string kernels. J Mol Recognit, 21, 243-55 https://doi.org/10.1002/jmr.893
- Zhang W, Niu Y (2010). Presented at 3rd International conference on biomedical engineering and informatics. BMEI, 10, 5640578.
Cited by
- Reversal of Resistance towards Cisplatin by Curcumin in Cervical Cancer Cells vol.15, pp.3, 2014, https://doi.org/10.7314/APJCP.2014.15.3.1403
- Pathways and Delayed Cyclin B1 Nuclear Translocation vol.15, pp.9, 2014, https://doi.org/10.7314/APJCP.2014.15.9.4101
- In silico prediction of epitopes for Chikungunya viral strains vol.45, pp.6, 2015, https://doi.org/10.1007/s40005-015-0205-0
- Analysis of L1/L2 Sequences of Human Papillomaviruses: Implication for Universal Vaccine Design vol.30, pp.3, 2017, https://doi.org/10.1089/vim.2016.0142
- In Silico Analysis of Synaptonemal Complex Protein 1 (SYCP1) and Acrosin Binding Protein (ACRBP) Antigens to Design Novel Multiepitope Peptide Cancer Vaccine Against Breast Cancer pp.1573-3904, 2018, https://doi.org/10.1007/s10989-018-9780-z