DOI QR코드

DOI QR Code

Cyclin D1 Gene G870A Variants and Primary Brain Tumors

  • Zeybek, Umit (Department of Molecular Medicine, Institute of Experimental Medicine, Istanbul University) ;
  • Yaylim, Ilhan (Department of Molecular Medicine, Institute of Experimental Medicine, Istanbul University) ;
  • Ozkan, Nazli Ezgi (Department of Molecular Medicine, Institute of Experimental Medicine, Istanbul University) ;
  • Korkmaz, Gurbet (Department of Molecular Medicine, Institute of Experimental Medicine, Istanbul University) ;
  • Turan, Saime (Department of Molecular Medicine, Institute of Experimental Medicine, Istanbul University) ;
  • Kafadar, Didem (Department of Neurosurgery, Cerrahpasa Medical Faculty, Istanbul University) ;
  • Cacina, Canan (Department of Neurosurgery, Cerrahpasa Medical Faculty, Istanbul University) ;
  • Kafadar, Ali Metin (Department of Neurosurgery, Cerrahpasa Medical Faculty, Istanbul University)
  • Published : 2013.07.30

Abstract

Alterations of cyclin D1, one of the main regulators of the cell cycle, are known to be involved in various cancers. The CCDN1 G870A polymorphism causes production of a truncated variant with a shorter half-life and thus thought to impact the regulatory effect of CCDN1. The aim of the present study was to contribute to existing results to help to determine the prognostic value of this specific gene variant and evaluate the role of CCDN1 G870A polymorphism in brain cancer susceptibility. A Turkish study group including 99 patients with primary brain tumors and 155 healthy controls were examined. Genotypes were determined by polymerase chain reaction-restriction fragment length polymorphism analysis. The CCDN1 genotype frequencies in meningioma, glioma and control cases were not significantly different (p>0.05). No significant association was detected according to clinical parameters or tumor characteristics; however, a higher frequency of AG genotype was recorded within patients with astrocytic or oligoastrocytic tumors. A significant association between AG genotype and gliobilastoma multiforme (GBM) was recorded within the patients with glial tumors (p value=0.048 OR: 1.87 CI% 1.010-3.463). According to tumor characteristics, no statistically significant difference was detected within astrocytic, oligoasltrocytic tumors and oligodentrioglias. However, patients with astrocytic astrocytic or oligoastrocytic tumors showed a higher frequency of AG genotype (50%) when compared to those with oligodendrioglial tumors (27.3%). Our results indicate a possible relation between GBM formation and CCDN1 genotype.

Keywords

References

  1. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002). The cell cycle and programmed cell death. Molecular biology of the cell. New York, Garland Science.
  2. Bethke L, Murray A, Webb E, et al (2008). Comprehensive analysis of DNA repair gene variants and risk of meningioma. J Natl Cancer Inst, 100, 270-6. https://doi.org/10.1093/jnci/djn004
  3. Bethke L, Webb E, Murray A, et al (2007). Comprehensive analysis of the role of DNA repair gene polymorphisms on risk of glioma. Hum Mol Genet, 17, 800-5. https://doi.org/10.1093/hmg/ddm351
  4. Betticher DC, Thatcher N, Altermatt HJ, et al (1995). Alternate splicing produces a novel cyclin D1 transcript. Oncogene, 11, 1005-11
  5. Betticher DC (1996). Cyclin D1, another molecule of the year? Ann Oncol, 7, 223-5. https://doi.org/10.1093/oxfordjournals.annonc.a010563
  6. Bondy ML, Scheurer ME, Malmer B, et al (2008). Brain tumor epidemiology: consensus from the brain tumor epidemiology consortium. Cancer, 113, 1953-68. https://doi.org/10.1002/cncr.23741
  7. DeAngelis LM (2001). Brain tumors. N Engl J Med, 344, 114-23. https://doi.org/10.1056/NEJM200101113440207
  8. Dhar KK, Branigan K, Howells RE, et al (1999) Prognostic significance of cyclin D1 gene (CCND1) polymorphism in epithelial ovarian cancer. Int J Gynecol Cancer, 9, 342-7. https://doi.org/10.1046/j.1525-1438.1999.99048.x
  9. Felini MJ, Olshan AF, Schroeder JC, et al (2007). DNA repair polymorphisms XRCC1 and MGMT and risk of adult gliomas. Neuroepidemiology, 29, 55-8. https://doi.org/10.1159/000108919
  10. Furnari FB, Fenton T, Bachoo RM, et al (2007). Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev, 21, 2683-710. https://doi.org/10.1101/gad.1596707
  11. Garcia-Martin E (2010). Two common nonsynonymous paraoxonase 1 (PON1) gene polymorphisms and brain astrocytoma and meningioma. BMC Neurol, 10, 71. https://doi.org/10.1186/1471-2377-10-71
  12. Gazioglu NM, Erensoy N, Kadioglu P, et al (2007). Altered cyclin D1 genotype distribution in human sporadic pituitary adenomas. Med Sci Monit, 13, 457-63.
  13. Grieu F, Malaney S, Ward R, Joseph D, Iacopetta B (2003). Lack of association between CCND1 G870A polymorphism and the risk of breast and colorectal cancers. Anticancer Res, 23, 4257-9.
  14. Gu J, Liu Y, Kyritsis AP, Bondy ML (2009). Molecular epidemiology of primary brain tumors. Neurotherapeutics, 6, 427-35. https://doi.org/10.1016/j.nurt.2009.05.001
  15. Hall M, Peters G (1996). Genetic alterations of cyclins, cyclin-dependent kinases, and Cdk inhibitors in human cancer. Adv Cancer Res, 68, 67-108. https://doi.org/10.1016/S0065-230X(08)60352-8
  16. Hegi ME, Diserens AC, Gorlia T, et al (2005). MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med, 352, 997-1003. https://doi.org/10.1056/NEJMoa043331
  17. Hibberts NA, Simpson DJ, Bicknell JE, et al (1999). Analysis of cyclin D1 (CCND1) allelic imbalance and overexpression in sporadic human pituitary tumors. Clin Cancer Res, 5, 2133-9.
  18. Holland EC (2001). Gliomagenesis: genetic alterations and mouse models. Nat Rev Genet, 2, 120-9. https://doi.org/10.1038/35052535
  19. Huang SF, Cheng SD, Chuang WY, Chen IH, Liao CT, Wang HM, Hsieh LL. (2012). Cyclin D1 overexpression and poor clinical outcomes in Taiwanese oral cavitysquamous cell carcinoma. World J Surg Oncol, 10, 40. https://doi.org/10.1186/1477-7819-10-40
  20. Inskip PD, Linet MS, Heineman EF (1995). Etiology of brain tumors in adults. Epidemiol Rev, 17, 382-414.
  21. Izzo JG, Malhotra U, Wu TT, et al (2005). Impact of cyclin D1 A870G polymorphism in esophageal adenocarcinoma tumorigenesis. Semin Oncol, 32, 11-5.
  22. Izzo JG, Papadimitrakopoulou VA, Liu DD, et al (2003). Cyclin D1 genotype, response to biochemoprevention, and progression rate to upper aerodigestive tract cancer. J Natl Cancer Inst, 95, 198-205. https://doi.org/10.1093/jnci/95.3.198
  23. Jain M, Kumar S, Upadhyay R, et al (2007). Influence of apoptosis (BCL2, FAS), cell cycle (CCND1) and growth factor (EGF,EGFR) genetic polymorphisms on survival outcome: an exploratory study in squamouscell esophageal cancer. Cancer Biol Ther, 6, 1553-8. https://doi.org/10.4161/cbt.6.10.4709
  24. Jares P, Fernandez PL, Campo E, et al (1994). PRAD-1/cyclin Dl gene amplification correlates with messenger RNA overexpression and tumor progression in human laryngeal carcinomas. Cancer Res, 54, 4813-7.
  25. Knudsen KE, Diehl JA, Haiman CA, Knudsen ES (2006) Cyclin D1: polymorphism, aberrant splicing and cancer risk. Oncogene, 25, 1620-8. https://doi.org/10.1038/sj.onc.1209371
  26. Krippl P, Langsenlehner U, Renner W, et al (2003). The 870G4A polymorphism of the cyclin D1 gene is not associated with breast cancer. Breast Cancer Res Treat, 82, 165-8 https://doi.org/10.1023/B:BREA.0000004372.20461.33
  27. Legler JM, Ries LA, Smith MA, et al (1999). Cancer surveillance series: brain and other central nervous system cancers: recent trends in incidence and mortality. J Natl Cancer Inst, 91, 1382-90. https://doi.org/10.1093/jnci/91.16.1382
  28. Liu W, Lv G, Li Y, Li L, Wang B (2011). Downregulation of CDKN2A and suppression of cyclin D1 gene expressions in malignant gliomas. J Exp Clin Cancer Res, 30, 76. https://doi.org/10.1186/1756-9966-30-76
  29. Malmer B, Henriksson R, Gronberg H (2002). Different aetiology of familial low-grade and high-grade glioma? A nationwide cohort study of familial glioma. Neuroepidemiology, VOL? 279-86.
  30. Malmer BS, Feychting M, Lonn S, et al (2007). Genetic variation in p53 and ATM haplotypes risk of glioma and meningioma. J Neurooncol, 21, 229-37.
  31. Marie SK, Shinjo SM (2011). Metabolism and brain cancer. Clinics (Sao Paulo), 66, 33-43. https://doi.org/10.1590/S1807-59322011001300005
  32. Michalides R, Van Veelen N, Hart A, et al (1995). Overexpression of cyclin Dl correlates with recurrence in a group of forty-seven operable squamous cell carcinomas of the head and neck. Cancer Res, 55, 975-8.
  33. Monteiro E, Varzim G, Pires AM, Teixeira M, Lopes C (2004). Cyclin D1 A870G polymorphism and amplification in laryngeal squamous cell carcinoma: implications of tumor localization and tobacco exposure. Cancer Detect Prev, 28, 237-43. https://doi.org/10.1016/j.cdp.2004.04.005
  34. Motokura T, Arnold A (1993). Cyclins and oncogenesis. Biochim Biophys Acta, 1155, 63-78.
  35. Musgrove EA, Lee CSL, Buckley MF, et al (1994). Cyclin Dl induction in breast cancer cells shorten Gl and is sufficient for cells arrested in Gl to complete the cell cycle. Proc Natl Acad Sci, 91, 8022-6. https://doi.org/10.1073/pnas.91.17.8022
  36. Naitoh H, Shibata J, Kawaguchi A, et al (1995). Overexpression and localization of cyclin Dl mRNA and antigen in esophageal cancer. Am J Pathol, 146, 1161-9.
  37. Pabalan N, Bapat B, Sung L, et al (2008). Cyclin D1 Pro241Pro (CCND1-G870A) polymorphism is associated with increased cancer risk in human populations: a meta-analysis. Cancer Epidemiol Biomarkers Prev, 17, 2773-81. https://doi.org/10.1158/1055-9965.EPI-08-0169
  38. Palmero I, Peters G (1996). Perturbation of cell cycle regulators in human cancer. Cancer Surv, 27, 351-67.
  39. Park BJ, Kim HK, Sade B, Lee JH (2009). Epidemiology in Lee, Juang H. Meningiomas: Diagnosis, Threatyment and Outcome. Springer
  40. Parkin DM, Bray F, Ferlay J, Pisani P (2005). Global cancer statistics, 2002. Cancer J Clin, 55, 74-108. https://doi.org/10.3322/canjclin.55.2.74
  41. Qiuling S, Yuxin Z, Suhua Z, et al (2003). Cyclin D1 gene polymorphism and susceptibility to lung cancer in a Chinese population. Carcinogenesis, 24, 1499-503. https://doi.org/10.1093/carcin/bgg035
  42. Quelle DE, Ashmun RA, Shurtleff SA, et al (1993). Overexpression of mouse D-type cyclins accelerates Gl phase in rodent fibroblasts. Genes Dev, 7, 1559-71. https://doi.org/10.1101/gad.7.8.1559
  43. Rajaraman P, Wang SS, Rothman N, et al (2007). Polymorphisms in apoptosis and cell cycle control genes and risk of brain tumors in adults. Cancer Epidemiol Biomarkers Prev, 16, 1655-61. https://doi.org/10.1158/1055-9965.EPI-07-0314
  44. Sadetzki S, Flint-Richter P, Starinsky S, et al (2005). Genotyping of patients with sporadic and radiation-associated meningiomas. Cancer Epidemiol Biomarkers Prev, 14, 969-76. https://doi.org/10.1158/1055-9965.EPI-04-0366
  45. Sanyal S, Festa F, Sakano S, et al (2004). Polymorphisms in DNA repair and metabolic genes in bladder cancer. Carcinogenesis, 25, 729-34.
  46. Sawa H, Ohshima TA, Ukita H, et al (1998). Alternatively spliced forms of cyclin D1 modulate entry into the cell cycle in an inverse manner. Oncogene, 16, 1701-12 https://doi.org/10.1038/sj.onc.1201691
  47. Schernhammer ES, Tranah GJ, Giovannucci E, et al (2006). Cyclin D1 A870G polymorphism and the risk of colorectal cancer and adenoma. Bri J Cancer, 94, 928-34. https://doi.org/10.1038/sj.bjc.6603007
  48. Schwartzbaum JA, Fisher JL, Aldape KD, Wrensch M (2006). Epidemiology and molecular pathology of glioma. Nat Clin Pract Neurol, 2, 494-503.
  49. Sherr CJ (1995). D type cyclins. Trends Biochem Sci, 20, 187-90. https://doi.org/10.1016/S0968-0004(00)89005-2
  50. Sherr CJ (1996). Cancer cell cycle. Science, 274, 1672. https://doi.org/10.1126/science.274.5293.1672
  51. Shu XO, Moore DB, Cai Q, et al (2005). Association of cyclin D1 genotype with breast cancer risk and survival. Cancer Epidemiol Biomarkers Prev, 14, 91-7.
  52. Simpson DJ, Fryer AA, Grossman AB, et al (2001). Cyclin D1 (CCND1) genotype is associated with tumour grade in sporadic pituitary adenomas. Carcinogenesis, 22, 1801-7. https://doi.org/10.1093/carcin/22.11.1801
  53. Solomon DA, WangY, Fox SR, et al (2003). Cyclin D1 splice variants. Differential effects on localization, RB phosphorylation, and cellular transformation. J Biol Chem, 278, 30339-47. https://doi.org/10.1074/jbc.M303969200
  54. Vogelstein B, Kinzler KW (2004). Cancer genes and the pathways they control. Nat Med, 10, 789-99. https://doi.org/10.1038/nm1087
  55. Wang R, Zhang JH, Li Y, et al (2003c). The association of cyclin D1 (A870G) polymorphism with susceptibility to esophageal and cardiac cancer in north Chinese population. Zhonghua Yi Xue Za Zhi, 83, 1089-92.
  56. Wang SS, Cozen W, Severson RK, et al (2006). Cyclin D1 splice variant and risk for non-Hodgkin lymphoma. Hum Genet, 120, 297-300. https://doi.org/10.1007/s00439-006-0212-3
  57. Wei Q, Bondy ML, Mao L, et al (1997).Reduced expression of mismatch repair genes measured by multiplex reverse transcription-polymerase chain reaction in human gliomas. Cancer Res, 57, 1673-7.
  58. Weinstein IB, Begemann M, Zhou P, et al (1997). Disorders in cell circuitry associated with multistage carcinogenesis: exploitable targets for cancer prevention and therapy. Clin Cancer Res, 3, 2696-702
  59. Wiencke JK, Aldape K, McMillan A, et al (2005). Molecular features of adult glioma associated with patient race/ethnicity, age, and a polymorphism in O6-methylguanine-DNA-methyltransferase. Cancer Epidemiol.Biomarkers Prev, 14, 1774-83. https://doi.org/10.1158/1055-9965.EPI-05-0089
  60. Wrensch M, Minn Y, Chew T, Bondy M, Berger MS (2002). Epidemiology of primary brain tumors: current concepts and review of the literature. Neuro-Oncol, 4, 278-99.
  61. Yang P, Kollmeyer TM, Buckner K, et al (2005). Polymorphisms in GLTSCR1 and ERCC2 are associated with the development of oligodendrogliomas. Cancer, 103, 2363-72. https://doi.org/10.1002/cncr.21028
  62. Yaylim-Eraltan I, Arikan S, Yildiz Y, et al (2010). The influence of cyclin D1 A870G polymorphism on colorectal cancer risk and prognosis in a Turkish population. Anticancer Res, 30, 2875-80.
  63. Yaylim-Eraltan I, Ergen A, Gormus U, et al (2009). Breast cancer and cyclin D1 gene polymorphism in Turkish women. In vivo, 23, 767-72.
  64. Yost SE, Pastorino S, Rozenzhak S, et al (2013). High-resolution mutational profiling suggests the genetic validity of glioblastoma patient-derived pre-clinical models. PLoS One, 8, 56185. https://doi.org/10.1371/journal.pone.0056185
  65. Zhang J, Li Y, Wang R, et al (2003). Association of cyclin D1 (G870A) polymorphism with susceptibility to esophageal and gastric cardiac carcinoma in a northern Chinese population. Int J Cancer, 105, 281-4 https://doi.org/10.1002/ijc.11067
  66. Zhang LQ, Huang XE, Wang J, et al (2011). The cyclin D1 G870A polymorphism and colorectal cancer susceptibility: a meta-analysis of 20 populations. Asian Pac J Cancer Prev, 12, 81-5.
  67. Zhang W, Gordon M, Press OA, et al (2006). Cyclin D1 and epidermal growth factor polymorphisms associated with survival in patients with advanced colorectal cancer treated with cetuximab. Pharmacogenet Genomics, 16, 475-83. https://doi.org/10.1097/01.fpc.0000220562.67595.a5
  68. Zheng Y, Shen H, Sturgis EM, et al (2001). Cyclin D1 polymorphism and risk for squamous cell carcinoma of the head and neck: a case-control study. Carcinogenesis, 22, 1195-9. https://doi.org/10.1093/carcin/22.8.1195
  69. Zhuo W, Zhang L, Wang Y, Zhu B, Chen Z (2012). Cyclin D1 G870A polymorphism is a risk factor for esophageal cancer among Asians. Cancer Invest, 30, 630-6. https://doi.org/10.3109/07357907.2012.726385

Cited by

  1. Lack of Sunlight Exposure Influence on Primary Glioblastoma Survival vol.15, pp.10, 2014, https://doi.org/10.7314/APJCP.2014.15.10.4165
  2. Association of Cyclin D1 Variants with Head and Neck Cancer Susceptibility: Evidence from a Meta-analysis vol.15, pp.14, 2014, https://doi.org/10.7314/APJCP.2014.15.14.5645
  3. Expression of Neuronal Markers, NFP and GFAP, in Malignant Astrocytoma vol.15, pp.15, 2014, https://doi.org/10.7314/APJCP.2014.15.15.6315
  4. The CCND1 G870A Gene Polymorphism and Leukemia or Non-Hodgkin Lymphoma Risk: a Meta-analysis vol.15, pp.16, 2014, https://doi.org/10.7314/APJCP.2014.15.16.6923
  5. A Cyclin D1 (CCND1) Gene Polymorphism Contributes to Susceptibility to Papillary Thyroid Cancer in the Turkish Population vol.15, pp.17, 2014, https://doi.org/10.7314/APJCP.2014.15.17.7181
  6. MAGED4 Expression in Glioma and Upregulation in Glioma Cell Lines with 5-Aza-2'-Deoxycytidine Treatment vol.15, pp.8, 2014, https://doi.org/10.7314/APJCP.2014.15.8.3495
  7. Anti-Proliferation Effects and Molecular Mechanisms of Action of Tetramethypyrazine on Human SGC-7901 Gastric Carcinoma Cells vol.15, pp.8, 2014, https://doi.org/10.7314/APJCP.2014.15.8.3581
  8. The CCND1 G870A Gene Polymorphism and Brain Tumor Risk: a Meta-analysis vol.15, pp.8, 2014, https://doi.org/10.7314/APJCP.2014.15.8.3607
  9. with Glioma in a Chinese Population vol.19, pp.1, 2015, https://doi.org/10.1089/gtmb.2014.0228
  10. CCND1 Splice Variant as A Novel Diagnostic and Predictive Biomarker for Thyroid Cancer vol.10, pp.11, 2018, https://doi.org/10.3390/cancers10110437