References
- Ang J, Lijovic M, Ashman LK, Kan K, Frauman AG (2004). CD151Protein expression predicts the clinical outcome of low-grade primary prostate cancer better than histologic grading: a new prognostic indicator? Cancer Epidemiol Biomarkers Prev, 13, 1717-21.
- Buim ME, Lourenco SV, Carvalho KC, et al (2010). Downregulation of CD9 protein expression is associated with aggressive behavior of oral squamous cell carcinoma. Oral Oncol, 46, 166-71. https://doi.org/10.1016/j.oraloncology.2009.11.009
- Chen Z, Gu S, Trojanowicz B, et al (2011). Down-regulation of TM4SF is associated with the metastatic potential of gastric carcinoma TM4SF members in gastric carcinoma. World J Surg Oncol, 9, 43. https://doi.org/10.1186/1477-7819-9-43
- Erovic B M, Pammer J, Hollemann D, et al (2003). Motilityrelated protein-1CD9 expression in head and neck squamous cell carcinoma. Head Neck, 25, 848-57. https://doi.org/10.1002/hed.10306
- Hong IK, Jin YJ, Byun HJ, et al (2006). Homophilic interactions of Tetraspanin CD151 up-regulate motility and matrix metalloproteinase-9 expression of human melanoma cells through adhesion-dependent c-Jun activation signaling pathways. J Biol Chem, 281, 24279-92. https://doi.org/10.1074/jbc.M601209200
- Huang CI, Kohno N, Ogawa E et al (1998). Correlation of reduction in MRP-1/CD9 and KAI1/CD82 expression with recurrences in breast cancer patients. Am J Pathol, 153, 973-83. https://doi.org/10.1016/S0002-9440(10)65639-8
- Jackson P, Rowe A, Grimm MO (2007). An alternatively spliced KAI1 mRNA is expressed at low levels in human bladder cancers and bladder cancer cell lines and is not associated with invasive behaviour. Oncol Rep, 18, 1357-63.
- Kischel P, Bellahcene A, Deux B (2012). Overexpression of CD9 in human breast cancer cells promotes the development of bone metastases. Anticancer Res, 32, 5211-20.
- Malik FA, Sanders AJ, Jiang WG (2009). KAI-1/CD82, the molecule and clinical implication in cancer and cancer metastasis. Histol Histopathol, 24, 519-30.
- Malik FA, Sanders AJ, Jones AD, Mansel RE, Jiang WG (2009). Transcriptional and translational modulation of KAI1 expression in ductal carcinoma of the breast and the prognostic significance. Int J Mol Med, 23, 273-8.
- Mazurov D, Barbashova L, Filatov A(2013).Tetraspanin protein CD9 interacts with metalloprotease CD10 and enhances its release via exosomes. FEBS J, 280, 1200-13. https://doi.org/10.1111/febs.12110
- Mohan A, Nalini V, Mallikarjuna K, Jyotirmay B, Krishnakumar S (2007). Expression of motility-related protein MRP1/CD9, N-cadherin, E-cadherin, alpha-catenin and beta-catenin in retinoblastoma. Exp Eye Res, 84, 781-9. https://doi.org/10.1016/j.exer.2006.06.014
- Ono M, Handa K, Withers DA, Hakomori S (1999). Motility inhibition and apoptosis are induced by metastasissuppressing gene product CD82 and its analogue CD9, with concurrent glycosylation. Cancer Res, 59, 2335-9.
- Powner D, Kopp PM, Monkley SJ, Critchley DR, Berditchevski F (2011). Tetraspanin CD9 in cell migration. Biochem Soc Trans, 39, 563-7. https://doi.org/10.1042/BST0390563
- Radford KJ, Mallesch J, Hersey P (1995). Suppression of human melanoma cell growth and metastasis by the melanomaassociated antigen CD63 (ME491). Int J Cancer, 62, 631-5. https://doi.org/10.1002/ijc.2910620523
- Setoguchi T, Kikuchi H, Yamamoto M, et al (2011). Microarray analysis identifies versican and CD9 as potent prognostic markers in gastric gastrointestinal tumors. Cancer Sci, 102, 883-9. https://doi.org/10.1111/j.1349-7006.2011.01872.x
- Shibagaki N, Hanada KI, Yamashita H, Shimada S, Hamada H (1999). Overexpression of CD82 on human T cells enhances LFA1/ICAM1-mediated cell-cell adhesion: functional association between CD82 and LFA1 in T cell activation. Eur J Immunol, 29, 4081-91. https://doi.org/10.1002/(SICI)1521-4141(199912)29:12<4081::AID-IMMU4081>3.0.CO;2-I
- Shiwu WU, Lan Y, Wenqing S, Lei Z, Yisheng T (2012). Expression and clinical significance of CD82/KAI1 and E-cadherin in non-small cell lung cancer. Arch Iran Med, 15, 707-12.
- Soyuer S, Soyuer L, Unal D, et al (2010). Prognostic significance of CD9 expression in locally advanced gastric cancer treated with surgery and adjuvant chemoradiotherapy. Pathol Res Pract, 206, 607-10. https://doi.org/10.1016/j.prp.2010.04.004
- Takeda T, Hattori N, Tokuhara T, et al (2007). Adenoviral transduction of MRP-1/CD9 and KAI1/CD82 inhibits lymph node metastasis in orthotopic lung cancer model. Cancer Res, 67, 1744-9. https://doi.org/10.1158/0008-5472.CAN-06-3090
- Woegerbauer M, Thurnher D, Houben R, et al (2010). Expression of the tetraspanins CD9, CD37, CD63, and CD151 in Merkel cell carcinoma: strong evidence for a posttranscriptional fine-tuning of CD9 gene expression. Mod Pathol, 23, 751-62. https://doi.org/10.1038/modpathol.2009.192
- Xu JH, Guo XZ, Ren LN, Shao LC, Liu MP (2008). KAI1 is a potential target for anti-metastasis in pancreatic cancer cells. World J Gastroenterol, 14, 1126-32. https://doi.org/10.3748/wjg.14.1126
- Yauch RL, Kazarov AR, Desai B, Lee RT, Hemler ME (2000). Direct extracellular contact between integrin alpha(3)beta(1) and TM4SF protein CD151. J Biol Chem, 275, 9230-8 https://doi.org/10.1074/jbc.275.13.9230
- Zoller M (2006). Gastrointestinal tumors: metastasis and tetraspanins. Z Gastroenterol, 44, 573-86. https://doi.org/10.1055/s-2006-926795
Cited by
- CD40 expression and its prognostic significance in human gastric carcinoma vol.32, pp.3, 2015, https://doi.org/10.1007/s12032-014-0463-0
- Clinical significance of KAI1/CD82 protein expression in nasopharyngeal carcinoma pp.1792-1082, 2015, https://doi.org/10.3892/ol.2015.2891
- Changing the (Intercellular) Conversation: a Potential Role for Exosomal Transfer of microRNA in Environmental Health vol.3, pp.2, 2016, https://doi.org/10.1007/s40471-016-0074-8
- Alternative splicing is an important mechanism behind KAI1 loss of function in breast cancer patients from Saudi Arabia pp.1573-7217, 2019, https://doi.org/10.1007/s10549-018-4999-0
- Balancing yield, purity and practicality: a modified differential ultracentrifugation protocol for efficient isolation of small extracellular vesicles from human serum vol.16, pp.1, 2019, https://doi.org/10.1080/15476286.2018.1564465