References
-
Bai, D. S. and Lee, K. T. (1998), An economic design of variable sampling interval
$\bar{X}$ control charts, International Journal of Production Economics, 54, 57-64. https://doi.org/10.1016/S0925-5273(97)00125-4 - Champ, C. W. and Woodall, W. H. (1987), Exact results for Shewhart charts with supplementary runs rules, Technometrics, 29, 393-399. https://doi.org/10.1080/00401706.1987.10488266
-
Costa, A. F. B. and Rahim, M. A. (2001), Economic design of
$\bar{X}$ charts with variable parameters : the Markov chain approach, Journal of Applied Statistics, 28, 875-885. https://doi.org/10.1080/02664760120074951 -
Costa, A. F. B. and De Magalhaes, M. S. (2002), Economic design of two-stage
$\bar{X}$ charts : The Markov chain approach, International Journal of Production Economics, 95, 9-20. -
De Magalhaes, M. S. and Moura Neto, F. D. (2005), Joint economic model for totally adaptive
$\bar{X}$ and R charts, European Journal of Operational Research, 161, 148-161. https://doi.org/10.1016/j.ejor.2003.08.033 -
Duncan, A. J. (1956), The economic design of
$\bar{X}$ charts used to maintain current control of a process, Journal of American Statistical Association, 51, 228-242. -
Duncan, A. J. (1971), The economic design of
$\bar{X}$ charts when there is a multiplicity of assignable cause, Journal of American Statistical Association, 66, 107-121. - Lee, J. H. and Kwon, W. J. (1999), Economic design of a Two-Stage Control Chart Based on Both Performance and Surrogate Variables, Naval Research Logistics, 46, 954-977.
-
Lee, T. H., Lee, J. H., Lee, M. K., and Lee. J. H. (2009), An economic of
$\bar{X}$ control chart using a surrogate variable, Korean Society for Quality Management, 37, 46-57. - Lucas, J. M. (1982), Combined Shewhart-CUSUM quality control schemes, Journal of Quality Technology, 14, 51-59. https://doi.org/10.1080/00224065.1982.11978790
- Lucas, J. M. and Saccucci, M. S. (1990), Exponentially weighted moving average control schemes : properties and enhancements, Technometircs, 32, 1-29. https://doi.org/10.1080/00401706.1990.10484583
- Owen, D. B. and Boddie, J. W. (1976), A screening method for increasing acceptable product with some parameters unknown, Technometrics , 18, 195-199. https://doi.org/10.1080/00401706.1976.10489424
-
Reynolds Jr., M. R., Amin R. W., Arnold J. C., and Nachlas J. A., (1988),
$\bar{X}$ charts with variable sampling intervals, Technometrics, 30, 181-192. - Reynolds Jr., M. R. and Arnold, J. C. (1989), Optimal one-sided Shewhart control charts with varialbe sampling intervals, Sequential Analysis, 8, 51-77. https://doi.org/10.1080/07474948908836167
- Ross, S. M. (1983), Stochastic Processes, John Wiley and Sons, New York.
- Runger, G. C. and Montgomery, D. C. (1993), Adaptive sampling enhancements for Shewhart control charts, IIE Transactions, 25, 41-51. https://doi.org/10.1080/07408179308964289
- Ryu, J. P. and Shin, H. J. (2012), Investment strategies for KOSPI200 Index Futeres using VKOSPI and control chart, Journal of the Korean Institute of Industrial Engineers, 38, 237-243. https://doi.org/10.7232/JKIIE.2012.38.4.237
- Saccucci, M. S., Amin, R. W. and Lucas, J. M. (1992), Exponentially weighted moving average schemes with variable sampling intervals, Communications is Statistics-Simulation and Computation, 21, 627-657. https://doi.org/10.1080/03610919208813040
- Venkataraman, P. (2009), Applied optimization with matlab programming second edition, John wiley and Son, Inc.