References
- Cudney, E., Hong, J., Jugulum, R., Paryani, K., Ragsdell, K., and Taguchi, G. (2007), An Evaluation of Mahalanobis-Taguchi System and Neural Network for Multivariate Pattern Recognition, Journal of Industrial and Systems Engineering, 1(2), 139-150.
- Cudney, E., Hong, J., Drain, D., Paryani, K., Ragsdell, K., and Sharma, N. (2009), A Comparison of the Mahalanobis-Taguchi System to A Standard Statistical Method for Defect Detection, Journal of Industrial and Systems Engineering, 2(4), 250-258.
- Hastie, T., Tibshirani, R., and Friedman, J. (2009), The Elements of Statistical Learning : Data Mining, Inference, and Prediction, 2nd ed., Springer.
- Hosmer, D.W. and Lemeshow, S. (2000), Applied Logistic Regression, 2nd ed, John Wiley and Sons, Inc.
- Izenman, A. J. (2008), Modern Multivariate Statistical Techniques : Regression, Classification and Manifold Learning, Springer.
- Johnson, R. A. and Wichern, D. W. (1992), Applied Multivariate Statistical Analysis, Englewood Ciffs, Prentice Hall.
- Jugulum, R. and Monplaisir, L. (2002), Comparison between Mahalanobis-Taguchi-System and Artificial Neural Networks, Journal of Quality Engineering Society, 10(1), 60-73.
- Kim, S. B., Tsui, K.-L., Sukchotrat, T., and Chen, V. (2009), A Comparison Study and Discussion of the Mahalanobis-Taguchi system. International Journal of Industrial and Systems Engineering, 4(6), 631-644. https://doi.org/10.1504/IJISE.2009.026768
- Sigillito, V. G., Wing, S. P., Hutton, L. V., and Baker, K. B. (1989), Classification of Radar Returns from the Ionosphere using Neural Networks, Johns Hopkins APL Technical Digest, 10, 262-266.
- Taguchi, G., Chowdury, S., and Wu, Y. (2001), The Mahalanobis Taguchi System, McGraw Hill, New York.
- Taguchi, G. and Jugulum, R. (2000), New Trends in Multivariate Diagnosis, Indian Journal of Statistics, 62, Series B, 233-248.
- Taguchi, G. and Jugulum, R. (2002), The Mahalanobis-Taguchi Strategy : A pattern technology system, John Wiley and Sons.
- Tan, P.-N., Steinbach, M., and Kumar. V. (2006), Introduction to Data Mining, Addison-Wesley.
- Vardhan, R. V., Sukanya, D. J. V., and Arthanari, T. S. (2012), Criteria of Classification and Measures of Performance, International Journal of Advance Mathemetics and Mathematical Stiences, 1(1), 41-48.
- Wang, H.-C., Chiu, C.-C., and Su, C.-T. (2004), Data Classification using the Mahalanobis-Taguchi System, Journal of the Chinese Institute of Industrial Engineers, 21(6), 606-618. https://doi.org/10.1080/10170660409509440
- Woodall, W. H., Koulelik, R., Tsui, K. L., Kim, S. B., Stoumbos, Z. G., and Carvounis, C. P. (2003), A Review and Analysis of the Mahalanobis Taguchi System, Technometrics, 45(1), 1-30. https://doi.org/10.1198/004017002188618626